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ABSTRACT

In general, noise reduction schemes for application in hearing-
aids or car environments have parameters that are determined
by technical distance measures or heuristically based on infor-
mal listening by the algorithm developers. In [1] we have shown
that quality measures based on psychoacoustic models are better
suited to optimize single parameters in terms of the best subjec-
tive overall quality than pure technical measures like, e.g., the
signal-to-noise ratio. In other words, a test-bench based on ob-
jective quality measures and several typical noise types can sup-
port the search for the best-sounding noise reduction algorithms
and their internal parameter settings. However, if the algorithms
become more complex, e.g., because of frequency-dependent pa-
rameters, a single broadband measure might not be feasible to
assess optimal settings because of the high dimensionality of the
parameter space. In this case a subband-based perceptual quality
measure might be feasible. In this study, we exemplarily apply
subband-based quality prediction to parameter optimization in a
noise reduction algorithm based on auditory filters.

1. INTRODUCTION

The aim of this study is to improve the applicability of per-
ceptual objective measures to the systematic optimization
of noise reduction algorithms. In particular, perceptual
measures calculated in subbands are used to optimize a
multidimensional parameter set band-wise. The technique
is exemplarily applied to a monaural state-of-the-art noise
reduction scheme, which was adopted to work with gam-
matone auditory filterbank signals instead of
short-time fourier transformed (STFT-) signals. The para-
meterized noise reduction algorithm described in section
2 is then optimized with the perceptual subband measure
which is defined in section 3. To assess the effects of noise
reduction on the so called internal representations we take
a look at processed speech signals mixed with stationary
speech-shaped noise in section 5. The results are summa-
rized in section 6.

2. ALGORITHM

The proposed noise reduction scheme (see Fig. 1) is based
on the idea of Ephraim and Malah’s MMSE1 log-STSA2

[2] algorithm. Instead of the short-time fourier transform
(STFT) we use a complex-valued gammatone filterbank
which is supposed to have a frequency resolution simi-
lar to that of the auditory system. The gammatone filters
[3] are widely used in computational auditory models for
modeling the peripheral filtering in the cochlea. [4] pro-
poses an efficient complex-valued implementation with
signal resynthesis, which is used here.
Let s(t) and n(t) denote the speech and the noise signals,
respectively. The observed signal x(t) is given by

x(t) = s(t) + n(t). (1)

If the noisy time-signal x(t) is filtered by a 4th-order lin-
ear gammatone filterbank we get a complex time-frequency
dependent signal similar to a STFT-processed signal

X(t, f) = S(t, f) + N(t, f), (2)

with t denoting the time-index and f the center-frequency-
index of the discrete signals. We believe that X(t, f) can
be processed similar to an STFT-signal by multiplication
with a time-varying gain G(t, f) with the aim to recon-
struct the desired signal’s envelope. The desired signal is
estimated by

Ŝ(t, f) = G(t, f) · X(t, f). (3)

Ŝ(t, f) can be resynthesized into a time signal ŝ(t) with
low delay by using the synthesis algorithm in [4]. G(t, f)
is calculated due to [2, 5] based on two SNR estimates:

G(t, f) = f{SNRpost(t, f),SNRprio(t, f)} (4)

with

SNRpost(t, f) = P

[
Φ̂XX(t, f)
Φ̂NN (t, f)

− 1

]
(5)

with P [x] =
{

x x > 0
0 x ≤ 0 (6)

1MMSE: minimum mean squared error
2STSA: short-time spectral attenuation



SNRprio(t, f) = α
Φ̂SS(t, f)
Φ̂NN (t, f)

+(1 − α)SNRpost(t, f) (7)

In this equations Φ̂NN , Φ̂XX and Φ̂SS denote power esti-
mates of the signals N,X and Ŝ, respectively. In practice,
Eq. (4) is precalculated and stored in a two-dimensional
gain table spanned by the two SNR estimates. Eq. (7)
is known as the ”decision directed approach”. The a pri-
ori SNR, SNRprio, is a weighted sum of the previously
estimated SNR and the instantaneous a posteriori SNR.
The weighting factor α has the character of a smooth-
ing constant with the equivalent low-pass time-constant
τ(f) = −Ta

ln(α(f)) , Ta : sampling period (block period).

Φ̂NN (t, f) is estimated using a modified version of the
minimum statistics method by Martin [6]. Φ̂XX and Φ̂SS

are calculated as follows:

Φ̂SS(t, f) = αs(f)Φ̂SS(t − 1, f)
+(1 − αs(f))|Ŝ(t − 1, f)|2 (8)

Φ̂XX(t, f) = αx(f)Φ̂XX(t − 1, f)
+(1 − αx(f))|X(t, f)|2 (9)

It has been found experimentally that frequency depen-
dent smoothing of the power estimates for X and Ŝ with
the smoothing parameters αx, αs (lowpass time constants
τx, τs) is useful when processing gammatone filterbank
signals. In STFT-based algorithms these smoothing pa-
rameters are 0, accordingly

Φ̂XX(t, f) = |X(t, f)|2 (10)
Φ̂SS(t, f) = |Ŝ(t − 1, f)|2. (11)

The amount of smoothing reduces amplitude modulations
and has to be selected carefully to not destroy important
speech information. On the other hand, the choice of the
time constants has an influence on distortions in the fil-
tered output signal. Therefore constants will be evaluated
experimentally with a perceptual quality measure that is
discussed in the following section.

3. PERCEPTUAL QUALITY MEASURES

The perceptual similarity measure (PSM) obtained from
PEMO-Q [7] is a broadband measure which is suitable for
measuring the overall quality of an audio signal. PEMO-
Q is based on a quantitative model of the ”effective” audi-
tory signal processing by Dau et al. [8]. The audio signal
is transformed in several stages into an internal represen-
tation corresponding to physiological findings about the
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Figure 1: Noise reduction scheme based on gammatone
auditory filterbank
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human hearing system. The first stage is a linear 4th order
gammatone filterbank [3] accounting for the basilar mem-
brane’s bandpass characteristic. The following stages are
• a halfwave rectification and lowpass-filtering which are

roughly simulating the transformation of mechani-
cal oscillations into neural firing rates,

• an absolute threshold accounting for the hearing
threshold,

• five cascaded feedback loops that model temporal mask-
ing and adaptation effects of the hearing system and

• a modulation lowpass filter with subsequent resampling
to 100 Hz sampling rate.

In [7] the last lowpass filter is replaced by a modulation
filterbank which is better suited for detecting small signal
degradations introduced by, e.g., audio codecs, for which
these quality measures were originally designed. Here, a
lowpass filter appears to be sufficient as in case of noise re-
duction the signal degradation produced by the lossy sys-
tem (i.e. additive noise + noise reduction) is much higher
than that of audio codecs.
The broadband quality measure PSM is the mean of the
subband correlations between the internal representations
of the processed test signal and a reference. Generally, the
desired signal for the analyzed algorithm is taken as the
reference for the objective quality measure. In terms of
noise reduction schemes, the desired signal can be clean
speech or a noisy signal which has a higher SNR than the
input signal.
For frequency dependent quality measurement we use the
subband correlations and the averaging across all frequency
bands is omitted. Let Itf denote the time-frequency de-
pendent internal representation of the estimated speech
signal ŝ(t). Dtf is the internal representation of the de-
sired signal, the reference. µI , µD denote the temporal
mean of the internal representations Itf and Dtf . The
subband similarity measure is then given by

PSM(f) =

∑
t

(Itf − µI(f))(Dtf − µD(f))√∑
t

(Itf − µI)2(Dtf − µD(f))2
(12)



4. PARAMETER OPTIMIZATION

In [1] we showed that the perceptual quality measure PSM
from PEMO-Q has a high correlation with the subjective
ratings of the overall quality. By varying the smoothing
parameter of the STFT-based Ephraim-Malah algorithm
(according to α in eq. 7) we could predict the optimal
smoothing in terms of subjective overall quality. As a
consequence, the parameter τ could be optimized by max-
imizing PSM.
In the case of the gammatone-filterbank based algorithm
we have multiple parameters that are frequency dependent
because of variable filter bandwidths and time resolution.
The filterbank in the noise reduction system is similar to
that used in PEMO-Q. This allows us to see the effects of
frequency dependent algorithm parameters on each sub-
band of the internal representation. If we combine the
smoothing parameters τX(f) and τS(f) (eqns. 8,9) to a
parameter vector

params(f) = {τX(f), τS(f), . . .} (13)

then

paramsopt(f) = arg max
params(f)

PSM(f) (14)

describes the optimal frequency dependent parameter vec-
tor. This can be used for automatic subband quality op-
timization of the proposed algorithm. However, uncon-
strained independent subband optimization can lead to a
large variation of the optimal parameters across frequency
bands. This happens if the variance of subband PSM-
values for different settings is small, then, slight numeri-
cal changes of the input signal can cause a great change of
”optimal” values. To overcome this problem we suggest to
add the constraint that only small parameter changes be-
tween adjacent frequency bands are allowed and that the
parameter values change monotonically with frequency.
The following section discusses the effects of the noise
reduction system on the internal representation.

5. EFFECTS OF THE NOISE REDUCTION ON
THE INTERNAL REPRESENTATIONS

Figure 2 (a) shows a temporal section of the power en-
velope and (b) the related internal representation (IR) in
subband 10 (569 Hz) for the clean speech signal (red) and
the noisy (speech-shaped noise, 5dB SNR) input signal
(black). It can be seen in (b) that the most striking dif-
ferences between clean speech and noisy signal are the
stronger overshoots and undershoots in the clean speech
signal IR whereas the behavior of the subband power en-
velope (a) is different: Here, the additive noise only in-
fluences the envelope in speech pauses and does not raise
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Figure 2: Subband power envelope (a) and internal rep-
resentations (b,c) for subband 10 (center frequency fc =
569 Hz)

the peaks significantly. For stationary inputs, the (adap-
tation) feedback loops of the auditory model have a com-
pressive effect (see [7]). Therefore, the noisy signal IR
has less peaks than the clean speech signal IR, assuming
that the noise is stationary compared to the speech sig-
nal. The task of the noise reduction scheme can be inter-
preted as reconstruction of the peaks of the speech signal
IR. One drawback of spectral subtraction based noise re-
duction schemes is the occurrence of musical tones that
can be identified in the IR as erroneous peaks (see Fig.
2 (c)). Here, the parameters of the noise reduction algo-
rithm have been optimized to generate a processed sig-
nal IR (green) that has the highest possible correlation for
the given parameter space. The correlation between the
reference IR (red) and the processed signal IR (green) is
only slightly higher than the correlations of the IRs in (b),
while the difference between the related audio signals is
clearly audible. This shows that the results in single chan-
nel noise reduction systems are always a suboptimal trade-
off between noise reduction and speech distortion. Even
if the SNR is enhanced, the perceptual quality, predicted
by the measure PSM, can hardly be improved. This im-
plies that with the given parameter space of the algorithm
it is impossible to get closer to the desired clean speech
reference. Note that a perfect match (correlation = 1) be-
tween the IRs would predict that the processed signal is
indiscriminable from the clean speech.
In summary, the clean speech signal IR cannot be recon-
structed by single channel noise reduction schemes. This



leads us to the assumption that a noisy signal at a higher
SNR is better suited than a clean speech reference for per-
ceptual optimization. The effect of the optimization with
different reference signals on the IR is depicted in Fig. 3.
It shows the IRs of the test signals (green) and the refer-
ences (red) at higher frequency bands (fc = 2119 Hz).
The noise reduction seems to be better suited for high fre-
quency bands and therefore also the correlation between
test signal and reference IR is higher compared to low fre-
quency bands. We found that the optimization with the
noisy reference signal sometimes leads to less artifacts (er-
roneous peaks in the test signal, see Fig. 3 (a) 1.6 sec.),
because the noisy reference allows for residual noise af-
ter noise reduction (0.5-1 sec.). Using a noisy signal with
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Figure 3: Parameter optimization using a clean speech ref-
erence (a) and a noisy (25 dB SNR) speech reference (b)

an SNR of 25 dB (20 dB above the input signal) as a ref-
erence for the quality measure and incorporating the op-
timization constraints mentioned above, the perceptually
optimal time constants of the proposed noise reduction al-
gorithm were:

Band 1 2 3 4 5 6 . . . 26 27
τs/[ms] 2.0 2.0 1.9 1.9 1.8 1.8 . . . 1.0 1.0
τx/[ms] 100.0 96.5 93.1 89.6 86.2 82.7 . . . 13.5 10.0

The subjective quality of the output signals was signifi-
cantly better compared to the direct implementation with
time constants τx, τs = 0. This approves the assump-
tion that automatic parameter optimization with percep-
tual quality measures leads to a higher quality of the pro-
cessed audio signal. However, compared to the STFT-
based noise reduction scheme the quality could not be im-
proved, yet. Two reasons can be given for that: First, the
bandwidths of the auditory filterbank for low frequencies
are smaller than typical FFT-bandwidths which results in
stronger envelope fluctuations in these bands. This means
that the discrimination between speech and noise based on
statistical properties of the envelope is more difficult and

leads to more errors. Second, the proposed gain-table by
[2] was optimized on the statistical properties of STFT-
signals and does not hold for filterbank-signals with vari-
able bandwidths.

6. SUMMARY

In this paper we proposed a new method for subband based
quality prediction and parameter optimization which was
tested and analyzed on a monaural noise reduction algo-
rithm. The direct conversion of the STFT-based algorithm
due to [2] led to strong interferences and artifacts in the
audio signal. These artifacts could be reduced by the pro-
posed perceptual quality optimization scheme. With these
settings the processed audio signal had a quality which
was comparable to STFT-processed signals. However, we
could not yet improve the noise reduction scheme by us-
ing an auditory filterbank instead of a constant bandwidth
STFT-method. Looking at details of the internal represen-
tations in subbands, we were able to interpret the principle
limitations of the monaural noise reduction scheme.
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