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In an attempt to increase the robustness of automatic speech recognition (ASR) systems, a feature

extraction scheme is proposed that takes spectro-temporal modulation frequencies (MF) into

account. This physiologically inspired approach uses a two-dimensional filter bank based on Gabor

filters, which limits the redundant information between feature components, and also results in

physically interpretable features. Robustness against extrinsic variation (different types of additive

noise) and intrinsic variability (arising from changes in speaking rate, effort, and style) is quantified

in a series of recognition experiments. The results are compared to reference ASR systems using

Mel-frequency cepstral coefficients (MFCCs), MFCCs with cepstral mean subtraction (CMS) and

RASTA-PLP features, respectively. Gabor features are shown to be more robust against extrinsic

variation than the baseline systems without CMS, with relative improvements of 28% and 16% for

two training conditions (using only clean training samples or a mixture of noisy and clean utteran-

ces, respectively). When used in a state-of-the-art system, improvements of 14% are observed

when spectro-temporal features are concatenated with MFCCs, indicating the complementarity of

those feature types. An analysis of the importance of specific MF shows that temporal MF up to

25 Hz and spectral MF up to 0.25 cycles/channel are beneficial for ASR.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3699200]
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I. INTRODUCTION

Decades of research in the field of automatic speech rec-

ognition (ASR) brought numerous methods to improve the

recognition performance by increasing the robustness against

variability of speech signals. Several of these methods are

inspired by the principles of human speech perception, which

is motivated by the fact that the robustness of human recogni-

tion performance exceeds by far the robustness of ASR per-

formance even in acoustically optimal conditions (Lippmann,

1997; Cooke and Scharenborg, 2008; Meyer et al., 2011b).

The sources of variability in spoken language can be catego-

rized into extrinsic sources (e.g., background noise, the room

acoustics, or distortions of the communication channel) and

intrinsic sources, which are associated with the speech signal

itself (e.g., the talkers’ speaking style, gender, age, mood,

etc.). Compared to the human auditory system, ASR was

found to be far less robust against both types of variability

(Lippmann, 1997; Benzeghiba et al., 2007).

In this study, the focus lies on the improvement of fea-

ture extraction by using a set of physiologically inspired fil-

ters (Gabor filters), which is applied to a spectro-temporal

representation of the speech signal. In order to choose a set

of filters suitable for ASR tasks, a filter bank is defined and

used to extract a wide range of spectro-temporal modulation

frequencies (MF) from the signal, while at the same time

limiting the redundancy on feature level.

Most state-of-the-art ASR systems perform an analysis

of short-time segments of speech and use spectral slices,

typically calculated from 25 ms segments of the signal as

feature input. The most successful implementations of such

spectral processing are Mel-frequency cepstral coefficients

(MFCCs) (Davis and Mermelstein, 1980) and perceptual lin-

ear prediction features (PLPs) (Hermansky, 1990). These

features are usually concatenated with their first and second

order discrete temporal derivation (delta and double-delta

features) to incorporate information about the temporal

dynamics of the underlying signal on feature level. The PLP

feature extraction was later refined by performing RASTA

(RelAtive SpecTrA) processing, which effectively sup-

presses temporal fluctuations that correspond to background

noise or changes of the transmission channel (Hermansky

and Morgan, 1994). The idea of using temporal cues was

implemented in form of temporal pattern (or TRAPS) fea-

tures, which were found to increase robustness of ASR sys-

tems in noisy environments (Hermansky and Sharma, 1999).

These approaches suggest that both spectral and temporal

integration of a spectro-temporal representation of the signal

may be useful for speech processing, which has therefore

motivated studies that incorporate such spectro-temporal

processing for ASR.

From a physiological point of view, it seems worthwhile

to feed spectro-temporal features to ASR engines, since sev-

eral studies indicate that a similar processing is performed

by the auditory system: These findings indicate that some

neurons in the primary auditory cortex of mammals are

explicitly tuned to spectro-temporal patterns. For example,

Qiu et al. (2003) used specific spectro-temporal patterns to

identify spectro-temporal receptive fields (STRFs) in the au-

ditory cortex in cats. An STRF is associated with a particular

neuron or a group of neurons; it is an estimate for the
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spectro-temporal representation of the sound stimulus that

optimally “drives” the neuron. More recent findings show

that spectro-temporal representations of human speech found

in the primary auditory cortex of ferrets are well-suited to

distinguish phonemes (Mesgarani et al., 2008). The observa-

tion that such information is encoded in auditory processing

stages serves as motivation for the explicit use of this type of

representation in speech pattern recognition.

Different types of spectro-temporal features for ASR

have been investigated in the past. Ezzat et al. (2007a) and

Bouvrie et al. (2008) analyzed spectro-temporal patches

with a 2D discrete cosine transform. They used this represen-

tation as a tool for speech analysis and for the extraction of

robust features. Heckmann et al. (2008) and Domont et al.
(2008) employed spectro-temporal patches to derive STRFs

from artificial neurons. Another type of spectro-temporal

features originates directly from the modeling of the patterns

observed in the STRFs in the auditory cortex in cats.

Qiu et al. (2003) modeled these patterns with two-

dimensional Gabor functions. This motivated Kleinschmidt

and Gelbart (2002) to apply Gabor filters to the problem of

ASR, with the aim of explicitly incorporating spectro-

temporal cues on the feature level. An example of a two-

dimensional Gabor filter is shown in Fig. 1. These filters

were also shown to be suitable for the analysis of speech

properties [e.g., for the distinction of plosives, fricatives and

nasals (Ezzat et al., 2007b)]. Mesgarani et al. (2006) found

that the use of auditory Gabor features improves classifica-

tion results for speech/nonspeech detection in noisy environ-

ments. The extraction of features requires a set of Gabor

filters in order to capture information about spectral, tempo-

ral and spectro-temporal patterns.

One of the challenges when applying Gabor filters to

speech-related tasks is finding a suitable set of filters from

the vast number of parameter combinations and which

extracts relevant information from the spectro-temporal rep-

resentation. Standard back-ends such as Hidden Markov

Models (HMMs) using Gaussian Mixture Models (GMMs)

often require the components of input features to be decorre-

lated, and computational restrictions make the use of very

large vectors (with more than 1000 components) difficult.

In the past, different methods were proposed to cope with

this challenge. Kleinschmidt (2003) and Meyer and Kollmeier

(2011a) used a stochastic feature selection algorithm [the

Feature Finding Neural Network (FFNN) (Gramss, 1991)]

that was initialized with a random set of 80 filters. Based on

the performance on a simple recognition task (i.e., isolated

digits), filters that were found to decrease ASR performance

were discarded and replaced with a new random filter, which

eventually resulted in a set that was found to increase the

noise robustness for the recognition of noisy digit strings.

Improvements over the MFCC baseline were obtained by

using Gabor features as input to a Tandem system that con-

sists of an artificial neural net (or multi-layer perceptron,

MLP). The MLP transformed the Gabor input features into

posterior probabilities for phonemes. These posteriors were

then decorrelated and used as input to a conventional GMM/

HMM classifier.

A different approach is to consider the outputs of the

different Gabor filters as feature streams, and start with a

very high number of filters (up to tens of thousands com-

pared to the 80 filters mentioned before), and subsequently

merging filter outputs that are organized in streams with neu-

ral nets. A merger MLP was used to combine isolated

streams, and a PCA was applied to its output. This approach

was used by Chi et al. (2005), Zhao and Morgan (2008), and

Mesgarani et al. (2010).

These studies have shown that spectro-temporal infor-

mation helps to increase the robustness of ASR systems.

Meyer and Kollmeier (2011a) assumed that the benefits

observed for spectro-temporal features (compared to purely

spectral feature extraction) arise from a local increase of the

SNR since the Gabor functions serve as matched filters for

specific spectro-temporal structures in speech, such as form-

ant transitions. However, for several studies (Kleinschmidt

and Gelbart, 2002; Meyer and Kollmeier, 2011a), a different

database was used for MLP training than for the task for

which results were reported, and it is unclear if this addi-

tional training material might result in an advantage over set-

ups that do not make use of additional training data. Since

all of these studies use the combination of MLPs and PCA,

the physical meaning (in terms modulation frequencies) is

not directly interpretable from the features that are ulti-

mately fed to the back end. However, when using front-ends

as a tool for analysis that might give a hint on what kind of

input data is actually helpful, the physical interpretability is

a desirable feature.

The aims of this study are to design a filter bank of

spectro-temporal filters that are applicable to extract ASR fea-

tures, and to use these for an analysis of parameters relevant

for speech recognition based on spectro-temporal features.

Among the design decisions are the number of filters consid-

ered for the filter bank, their phase sensitivity, and the spectral

and temporal modulation frequencies to be used. Such a 2D

filter bank can then be employed to analyze the relative

importance of modulation frequencies. Kanedera et al. (1999)

performed a series of experiments that quantified the impor-

tance of purely temporal modulation frequencies for ASR.

One of the results is that temporal modulations in the range of

2 Hz to 16 Hz play the dominant role for ASR performance.

In this study, this analysis is extended to spectral and spectro-

temporal modulation frequencies by performing ASR experi-

ments when specific modulation frequencies are disregarded.

Nemala and Elhilali (2010) analyzed the contribution of

FIG. 1. 2D Gabor filter. (left) Real part. Black and white shading corre-

spond to negative and positive values, respectively. (right) Absolute values

of the filter’s transfer function in the modulation domain. White shading cor-

responds to high amplitude.
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different temporal and spectral modulation frequencies for

robust speech/non-speech classification and found temporal

modulations from 12 Hz to 22 Hz and spectral modulations

from 1.5 to 4 cycles/octave to be particularly useful to achieve

robustness in highly noisy and reverberant environments.

We then evaluate the robustness of these features in the

presence of intrinsic and extrinsic sources of variability, and

compare them to a range of spectral feature types that are

commonly applied in ASR. ASR performance in the pres-

ence of additive noise and varying channel characteristics is

investigated with two experimental setups (i.e., the widely

used Aurora2 digit recognition task that employs the HTK

back end, and the Numbers95 task for which a state-of-the-

art backend was used). The effect of intrinsic variation is

explored using a phoneme detection task (in which pho-

nemes are embedded in short nonsense utterances).

The structure of this paper is reflected by these aims:

We first present the design decisions for the Gabor filter

bank (Sec. II), how it is applied to feature extraction, and

which modulation frequencies were found to be relevant for

this ASR task (Sec. II A). Section II C presents the corre-

sponding results. The experiments that investigate the sensi-

tivity of spectro-temporal and baseline features against

extrinsic and intrinsic variability are presented in Sec. III B.

Sections III C and IV present the results, the discussion and

conclusions.

II. GABOR FILTER BANK FEATURES

This section describes the design of the Gabor filter

bank, the choice of its parameters, and the calculation of the

Gabor filter bank features (GBFB). With these features, we

perform an analysis of the importance of phase information

in spectro-temporal pre-processing, evaluate the effect of

selecting specific modulation frequencies.

A. Calculation of the GBFB features

An overview of the feature extraction scheme with the

Gabor filter bank process is illustrated in Fig. 2. First, a

Mel-spectrogram is calculated from the speech signal using

an implementation of the ETSI Distributed Speech Recogni-

tion Standard (ETSI Standard 201 108 v1.1.3 2003). This

standard defines the calculation of a Mel-spectrogram that

consists of 23 frequency channels with center frequencies in

the range from 124 Hz to 3657 Hz. The calculation is based

on frames of 25 ms length, while the temporal resolution is

100 frames/s. The spectrogram incorporates a Mel-

FIG. 2. Illustration of the Gabor filter bank feature extraction. The input log Mel-spectrogram is filtered with each of the 41 filters of the Gabor filter bank. An

example filter output is shown. The representative channels of this filter output are selected and concatenated with the representative channels of the other 40

Gabor filters. The resulting 311-dimensional output is used as feature vector.

FIG. 3. Illustration of the filtering process with a Gabor filter. (top) Mel-

spectrogram of the German sentence “Gleich hier sind die Nahrungsmittel”

(The food is right over here) that exhibits spectro-temporal (diagonal) struc-

tures that arise from vowel transitions and Gabor filter (real part shown in

the lower left corner of the spectrogram). (bottom) 2D filter output obtained

by calculating the convolution of the Mel-spectrogram and the real part of

the filter. White shading corresponds to high energy on the logarithmically

scaled color encoding.

FIG. 4. Illustration of the distribution and size of the transfer functions of

the Gabor filter bank filters. Each circle/ellipse corresponds to one Gabor fil-

ter and is centered on its center frequency. The circles/ellipses mark the

�1 dB level of the filters. With the exception of filters on the axis, the rela-

tion between the center modulation frequency and the bandwidth of its pass-

band is proportional. Since only the real part of the filter output is

considered for feature extraction, centrally symmetric filters yield identical

outputs. Therefore, only the filters that correspond to the filled circles/ellip-

ses are used for feature extraction.
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frequency scale that is logarithmic for frequencies above 1

kHz and therefore mimics the mapping of frequencies to spe-

cific regions of the basilar membrane in the inner ear. Since

the frequency mapping is not strictly logarithmic (with

approximately linear at frequencies below 800 Hz), the spec-

tral modulation frequencies are specified in cycles per chan-

nel. The absolute output values of the spectrogram are

compressed with the logarithm, roughly resembling the am-

plitude compression performed by the auditory system. The

spectrogram is then processed with the filters from the

GBFB, which are introduced in Sec. II A 1, by calculating

the two-dimensional convolution of the spectrogram and the

filter. This results in a time-frequency representation that

contains patterns matching the modulation frequencies asso-

ciated with a specific filter. The filtering process is illustrated

in Fig. 3, which shows the original spectrogram, a sample fil-

ter, and the filter output.

1. Gabor filter bank

The localized complex Gabor filters are defined in

Eq. (1), with the channel and time-frame variables k and n;
k0 denoting the central frequency channel; n0 the central

time frame; xk the spectral modulation frequency; xn the

temporal modulation frequency; �k and �n the number of

semi-cycles under the envelope in spectral and temporal

dimension; and / an additional global phase. A Gabor filter

is defined as the product of a complex sinusoid carrier

[Eq. (1b)] with the corresponding modulation frequencies xk

and xn, and an envelope function [Eq. (1a)].

hb xð Þ ¼ 0:5� 0:5 cos
2px

b

� �
� b

2
< x <

b
2

0 else

8<
: ; (1a)

sxðxÞ ¼ expðixxÞ; (1b)

gðk0; n0;xk;xn; k; n; �k; �n;/Þ ¼ sxkðk � k0Þsxn
ðn� n0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

carrier function

� h �k
2xk

ðk � k0Þh �n
2xn
ðn� n0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

envelope function

� ei/|{z}
phase factor

: (1c)

For purely temporal and purely spectral modulation filters

(xn¼ 0 or xk¼ 0) this definition results in filter functions

with infinite support. For that reason the filter size of all

filters is limited to 69 channels and 40 time frames. These

limits correspond roughly to the maximum size of the

spectro-temporal filters in the respective dimensions. Due to

the linear relation between the modulation frequency and the

extension of the envelope, all filters with identical values for

�k and �n are constant-Q filters.

Since relative energy fluctuations are of special interest

for the classification of speech, the DC bias of each filter is

removed. This is achieved by subtracting a normalized ver-

sion of the filter’s envelope function from the filter function,

so that their DC values cancel each other out. Filters that are

centered near the edges of the spectrogram usually do not lie

completely within the boundaries of the spectrogram. Hence,

the DC removal is applied for all center frequencies sepa-

rately to avoid artifacts. The effect of the DC removal is that

the resulting representation is independent of the global sig-

nal energy. Since a removal of the mean on a logarithmic

energy scale is the same as dividing by it on a linear scale,

this corresponds to a normalization. While cepstral coeffi-

cients normalize spectrally, and RASTA processing and dis-

crete derivatives normalize temporally, DC-free Gabor

filters naturally normalize in both directions.

The filter bank is designed with the aim of evenly cover-

ing the modulation frequencies in the modulation transfer

space as schematically illustrated in Fig. 4. Cross-sections of

the filter transfer functions along the x axis and y axis of this

representation are depicted in Fig. 5.

The distribution of spectro-temporal modulation fre-

quencies is defined by Eq. (2), which ensures that adjacent

filters exhibit a constant overlap in the modulation transfer

domain. The advantage of this definition is that each filter

accounts for a different combination of spectral and temporal

modulation frequencies (xn, xk) and thus has limited corre-

lation with the other filters.

xiþ1
x ¼ xi

x

1þ c

2

1� c

2

; (2a)

c ¼ dx
8

�x
: (2b)

Figure 5 also explains the meaning of the parameters of the

GBFB. The upper and lower bounds for the modulation fre-

quencies are given by xmax and xmin. The width of a filter x
is proportional to the center modulation frequency x and

anti-proportional to �, which results in constant-Q filters.

The distance to the point where two adjacent filters have

equal gains (marked with an x) is proportional to the width

and the distance factor d. This factor is used to adjust the

overlap of adjacent filters, with small values for d resulting

in a large overlap and with d¼ 1 corresponding to a coinci-

dence of the first zeros of adjacent filters. The redundancy of

the filter outputs due to their overlap can thus be controlled

by the distance parameter d.
The modulation frequencies (xn, xk) can assume posi-

tive or negative values. The signs determine the spectro-

temporal direction the filter is tuned to. Filters with only one

negative modulation frequency correspond to rising spectro-

temporal patterns, while other filters correspond to falling

spectro-temporal patterns. Since the feature extraction uses

the real part of the filter outputs, only filters with positive

modulation frequencies and their symmetric versions with
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one sign inverted are considered, as inverting both signs

would yield identical filters. This relation is illustrated in

Fig. 4. Only the filters that correspond to the filled circles/

ellises are used. The corresponding filters are depicted in

Fig. 6.

2. Selection of representative frequency channels

When using the filter output of all 41 filters, the result-

ing feature vector is relatively high-dimensional with 23

(frequency channels)� 41 (filters). We reduce the number of

feature components by exploiting the fact that the filter out-

put between adjacent channels is highly correlated when the

filter has a large spectral extent (cf. Figure 2). Since highly

correlated feature components can result in reduced ASR

performance (especially when only a small amount of train-

ing data is available), a number of representative channels is

selected by subsampling the 23-dimensional filter output for

each filter. The central channel, corresponding to about

1 kHz, is selected for all feature vectors because the most

important cues for ASR are more likely to be found in the

center rather than at the edges of the spectrum. Additionally,

channels with an approximate distance of a multiple of 1/4

of the filter width to the center channel are included. The

value 1/4 is motivated by the sampling theorem in the same

way as the minimum window overlap that is needed in a

spectrogram for perfect reconstruction.

For filters with the lowest spectral extent, all 23 compo-

nents are selected for the feature vector, while for the largest

filters only a single component (the central frequency chan-

nel) is kept. An example with three selected channels is

shown in Fig. 2. This selection scheme reduces the filter

bank output to 311 dimensions, which is referred to as

GBFB features. Alternatively, a principal component analy-

sis (PCA) may be applied to the full filter bank output, which

has the same effect as the channel selection (i.e., the decorre-

lation of feature components, and the reduction of dimen-

FIG. 5. Cross-section along the spectral and the temporal axis of the modulation transfer space showing the gains of the individual transfer functions. The width

of a filter w is proportional to the center modulation frequency x and anti-proportional to the number of half-waves under the envelope �, and is indicated here

for the highest modulation frequency. The distance to the point where two adjacent filters have equal gains (marked for the filter with the highest modulation fre-

quency with an x) is proportional to the width and the distance factor d. Note that the distance parameter d also controls the overlap between adjacent filters. In

the upper panel dk is chosen 0.3, where in the lower panel dn is 0.2.

FIG. 6. Real part of the 41 Gabor filters used for the Gabor filter bank fea-

ture extraction in time-frequency domain. Black and white shading corre-

sponds to negative and positive values, respectively.
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sionality). We therefore test the application of PCA to the fil-

ter bank output and compare the results to the proposed

scheme of channel selection.

3. Implementation

The calculation of GBFB features results in higher com-

putational load compared to standard front-ends (by a factor

of 80 compared to MFCC features), which may be an issue

on small-footprint systems. However, GBFB feature calcula-

tion can be performed in real-time on a single-core standard

PC, and with the current development of dual- and many-

core processors, considerable speedups can be achieved by

parallelizing the 2D convolutions of the filters. A reference

implementation of the GBFB feature extraction in MATLAB

is available online (Schädler, 2011).

B. Experiments

Before describing the experiments with the Gabor filter

bank, the Aurora 2 framework, the automatic speech recog-

nition framework that is used in all of the following experi-

ments in this section to determine performance and

robustness, is introduced.

1. Aurora 2: Digits in noise recognition task

To evaluate robustness against extrinsic variability the

Aurora 2 framework is used (Pearce and Hirsch, 2000). It

consists of the Aurora 2 speech database, a reference feature

extraction algorithm (MFCC), a recognizer setup [Hidden

Markov Toolkit (HTK) (Young et al., 2001)], and rules for

training and testing. The recognition task is the classification

of connected digit strings with artificially added noise. The

database contains digits spoken by native English speakers

and everyday noise signals recorded at 8 different sites (sub-

way, babble, car, exhibition, restaurant, street, airport, train

station). The test set consists of digits with noises added at

different SNRs ranging from 20 dB to �5 dB. The standard

features used in the Aurora 2 framework are MFCC features

with their first and second discrete derivative. For speech-

data modeling the HTK recognizer employs Gaussian Mix-

ture Models (GMMs) and Hidden Markov Models (HMMs).

In the Aurora 2 framework, two training and three test

conditions are defined: Clean training uses only clean utter-

ances, while for multi-condition training a mixture of noisy

(subway, babble, car, exhibition) and clean digit strings is

used. Test set A contains noises also used for training, while

for test set B unknown noise types (restaurant, street, airport,

station) are used. Test set C contains samples that have been

filtered with a different transfer function than the samples of

test set A, B, and the training data to simulate a change in

communication channel properties.

The HMM back end is configured according to the

Aurora 2 guidelines for all feature types: The number of

HMM states per word is 18, the number of Gaussian mix-

tures per state is three; an additional tuning of the back end

is not performed. Although tuning might improve results

especially when the feature dimension strongly differs from

the dimensionality of baseline features, we keep the parame-

ters for reasons of comparability with other studies that use

the Aurora 2 framework. For all features the number of time

frames is kept constant, because skipping a few frames at the

beginning and the end of the utterances improves the per-

formance as it narrows the region to where speech occurs.

The experiments are carried out with different feature

types to compare their robustness with respect to the effect

of the mismatches between the training and the test data, rep-

resented by test sets A, B, and C. The results obtained with

the Aurora 2 setup consist of the results for multi-condition

and clean training. Word recognition accuracies (WRA) in

percent are calculated for each noise condition and for each

signal-to-noise ratio (SNR) separately. We also present the

relative reduction of the word error rate (WER), which is

calculated by determining the relative reduction of error

WER¼ 1�WRA for each SNR/noise condition (with SNRs

ranging from 0 to 20 dB) and averaging over those improve-

ments. The average relative improvements of each noise

condition and of test set A, B, and C are calculated to differ-

entiate the effect of different types of mismatches between

training and test data. Furthermore, the average word recog-

nition accuracy and the relative improvement for each SNR

is calculated.

2. GBFB parameters

This section describes how several of the parameters of

the filter bank were chosen. We also compare this choice to

the corresponding parameters of the baseline features. Given

the structure of the filter bank (that defines, for example, the

position of filters in temporal and spectral dimension given a

spacing between those filters), we are left with eight parame-

ters that need to be specified: The lowest and highest temporal

and spectral modulation frequencies ðxmax
n ;xmax

k ;xmin
n ;xmin

k Þ,
the number of periods used for the filters (�n, �k), and the

overlap of adjacent filters (dk, dn). The initial values for these

parameters are chosen based on the corresponding values of

the baseline features (cf. Table I). For instance, the spectral

modulation frequencies associated with the baseline MFCCs

TABLE I. GBFB parameter values used for feature extraction in comparison with values derived from parameters of the baseline features.

Parameters (or their approximated analogues)

Features xmin
k

cyc

ch

h i
xmax

k

cyc

ch

h i
xmin

n Hz½ � xmax
n Hz½ � �k �n dk dn

GBFB 0.0254 0.2500 4.38 25 3.5 3.5 0.3 0.2

MFCC WI007 �0.022 �0.28 0.0 50 1�13 �1�3 �0.13 –

RASTA-PLP – – �2.6 �20 – – – –
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range from 0.022 to 0.28 cycles/channel, and the parameters

for GBFB features were chosen accordingly. The same is true

for the temporal modulation frequencies that are relevant in

RASTA-processing of signals. Further optimization was car-

ried out by performing a series of ASR experiments varying

the parameters one after another on the Aurora 2 task, finding

the parameters that result in best overall performance. The

optimization was carried out with a fixed phase setting of

/¼ 0, because this way the maximum amplitude of the filters

coincides with the center of the filter independently of its

modulation frequency. The parameters were not optimized in

any particular order which could have led to finding a local

optimum in the parameter space.

To test if GBFB features are overfitted to the Aurora 2

task by the selection of a specific set of parameters, varia-

tions of all parameters to the best performing set are eval-

uated. From the default set of parameters in Table I, each

parameter is set to different values, covering a wide range of

the plausible parameter space. The selection of frequency

channels (Sec. II A 2) was not optimized. Instead we apply

the outlined scheme to the full output of the filter bank, and

compare the results to transforming the full output with a

PCA. The results are presented and discussed in Sec. II C 1.

3. Importance of GBFB phase information

From the output of the Gabor filter bank, either the

real or imaginary part, or the absolute values may be used.

Using the imaginary part of the output is equivalent to

choosing the parameter / ¼ p=2, and effectively using the

filters as edge detectors of spectro-temporal events. The

absolute values of the output are less sensitive to the exact

spectro-temporal location. The phase of the Gabor filters

does not matter in this case. To test the importance of the

phase information of the filter bank output for robust ASR

the performance of the real part, the imaginary part and

absolute values of the filter output is compared on the

Aurora 2 task. The results are presented and discussed in

Sec. II C 2.

4. Relative importance of specific modulation
frequencies

In order to evaluate the importance of specific modula-

tion frequencies for ASR, a band-stop experiment is per-

formed that quantifies the contribution of specific

combinations of spectral and temporal modulation frequen-

cies (xk, xn) to the overall ASR performance. For this

evaluation, the feature components associated with a spe-

cific modulation frequency are removed from the output of

the Gabor filter bank. This approach results in 41 different

reduced filter sets. Since the number of center frequencies

associated with a specific spectro-temporal modulation fre-

quency varies (cf. Sec. II A 2), the number of dimensions

removed from the GBFB output ranges from 0 to 22. When

the accuracy decreases when omitting filters with a particu-

lar modulation frequency, these filters are likely to extract

relevant information that is not covered by the remaining

Gabor filters. On the other hand, if the accuracy increases

when filters are omitted, this indicates that the filters cap-

ture information that is either covered by the remaining fil-

ters or not relevant for this specific speech recognition

task.

The importance of the filters is evaluated with the

Aurora 2 task, since this speech material is expected to ex-

hibit a more natural distribution of temporal modulation fre-

quencies compared to the very short utterances from the

OLLO database. The Aurora 2 recognizer is trained and

tested with each reduced feature representation. The results

are presented and discussed in Sec. II C 3.

C. Results and discussion

1. GBFB parameters

Overall recognition performance in % WRA and % rela-

tive reduction of the WER over the MFCC WI007 baseline

for variations of the GBFB parameters of Table I are pre-

sented in Table II. The recognition performance for the

GBFB features with altered parameters changes compared to

TABLE II. Overall word recognition accuracies (WRA) and relative reduction of word error rates (relative improvement) compared to the MFCC baseline

with clean (c) and multi (m) condition training on the Aurora 2 task for various modifications to the GBFB parameters.

Parameter �k �n dk dn

Values 2.5 3.0 4.0 4.5 2.5 3.0 4.0 4.5 0.1 0.2 0.4 0.1 0.3 0.4

WRA [%] c 56.7 63.0 68.2 70.0 69.6 68.6 62.6 61.2 63.6 65.1 67.4 65.3 67.0 64.8

m 86.4 88.1 86.5 87.3 83.3 86.7 87.6 87.0 87.1 87.8 87.9 87.8 87.5 84.6

Rel. Imp. [%] c�18.8 14.5 33.9 37.7 30.8 33.0 14.3 10.0 22.7 27.0 28.9 28.1 29.4 11.4

m �2.8 18.6 9.2 5.27 �48.0 �2.2 13.4 10.2 12.0 14.0 12.5 17.5 11.4 �17.7

Parameter xmax
k 10�2 cyc

ch

h i
xmax

k Hz½ � xmin
k 10�2 cyc

ch

h i
xmin

k Hz½ �

Values 18.75 12.5 18.75 12.5 1.9 3.8 7.61 2.19 3.5 8.75

WRA [%] c 62.1 61.9 69.3 69.0 66.2 61.4 59.0 67.8 65.5 65.7

m 86.8 85.0 87.5 88.2 88.1 86.5 89.3 88.9 88.7 87.6

Rel.Imp. [%] c 16.0 14.2 34.2 33.4 28.4 12.0 �8.3 35.0 28.2 26.3

m 3.9 �5.0 7.9 7.4 16.6 6.1 24.1 10.5 17.2 15.5
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the original set. For some parameters the best values are dif-

ferent for clean and multi-condition training. Hence, the set

of parameters that is used for feature extraction is a trade-off

between performance for clean training and performance

with multicondition training and each could be improved

further by selecting different parameters. With many of the

changes to the original parameter set, the GBFB features still

improve the MFCC WI007 baseline. Some parameters affect

more the overall performance, some affect more the relative

improvement over the baseline, but there is no clear trend.

The presented results were obtained by selecting fre-

quency channels from the filter output as described in Sec. II

A 2. In order to evaluate if a decorrelation and dimension

reduction with a PCA should be preferred over channel

selection, we apply a PCA either to the full filter bank output

(i.e., channel selection is not performed) or the 311-

dimensional GBFB features. In each case, the transformation

statistics is obtained from the corresponding (clean or multi-

condition) training material, and the feature dimension is

reduced to 39 (the dimension of the baseline features). From

each dimension of the data the mean is removed and the var-

iance is normalized before calculating the PCA coefficients.

The results are shown in Table III.

The application of a PCA to the full filter bank output

results in recognition rates below the GBFB features and the

MFCC baseline. When a PCA is applied to the GBFB fea-

tures with representative channels, the absolute score for

clean training is improved, whereas multi-condition results

are better with GBFB features. The relative improvements

over the baseline are slightly higher with the original GBFB

approach. We therefore argue that the direct use of GBFB

features should be preferred over PCA-transformed features,

since GBFB features are easier to calculate, produce slightly

better results on average, and the physical meaning of fea-

ture components is retained (i.e., each feature component is

associated with a modulation frequency, which enables

experiments such as the evaluation of the contribution of

such physical parameters to ASR).

The results of the parameter variation and the PCA

show that the feature extraction can be optimized for a spe-

cific condition. For multi-condition training for example,

even less robust patterns may serve for the recognition, as

their uncertainty is known. These patterns could be matched

by Gabor filters with diverse shapes. In this sense, the GBFB

structure limits the fitting to a specific task by greatly reduc-

ing the degree of freedom of the feature extraction in con-

trast to a set of independent Gabor filters. The GBFB

features project the log Mel-spectrogram to a over-complete

basis of a subspace of the log Mel-spectrogram. The sub-

space is limited by the lower and upper bounds for the modula-

tion frequencies ðxmin
k to xmax

k and xmin
n to xmax

n Þ. Its degree

of over-completeness is adjusted by the distance parameter d
and the shape of the basis functions is determined by �.

It is likely that for different tasks different sets of pa-

rameters are optimal, as it is also the case with traditional

features. However, we found that none of the parameters of

this very generic projection is critical to outperform the

MFCC baseline. Nonetheless, ASR systems are non-linear

and complex so that the front end and the back end cannot

be judged independently. Back ends make strong assump-

tions about the feature’s statistical characteristics, which

lead to degraded recognition performance if ignored. A

remaining question is if the improvements made with GBFB

features for the Aurora 2 task will translate to other ASR set-

ups. For that reason the GBFB features that are adapted to

work well with the GMM/HTK back end of the Aurora 2

task are evaluated on another recognition task with a differ-

ent back end in Sec. III.

2. Importance of GBFB phase information

Overall recognition performance in % WRA and % rela-

tive reduction of the WER over the MFCC WI007 baseline

for the real part, the imaginary part and the absolute values

of the GBFB features are presented in Table IV. The accura-

cies obtained with the real and imaginary part are in the

same range, whereas the performance with absolute values

(for which the location of spectro-temporal events is

smeared out) is reduced considerably. This indicates that

phase information is an important factor for ASR, and should

be considered in spectro-temporal feature extraction. Since

the real-valued filter output performs slightly better than fea-

tures based on imaginary filters on average, we use the real

output for ASR experiments.

3. Relative importance of specific modulation
frequencies

In this section, the digit recognition performance is deter-

mined based on reduced filter sets, for which a spectro-

temporal modulation frequency is omitted as described inTABLE III. Comparison of GBFB features that incorporate the selection of

frequency channels from the filter output (GBFB), processing the full filter

bank output with a PCA (GBFB
full and PCA) and application of a PCA to the

GBFB features (GBFB and PCA). The recognition performance is presented

in word recognition accuracies in % and as relative improvement over the

MFCC baseline for clean (c) and multi (m) condition training.

Method PCA GBFB GBFB and PCA GBFB

full
and PCA

Traindata – clean multi clean multi

WRA [%] c 66.2 69.6 64.5 56.5 45.4

m 88.1 82.9 84.6 85.0 86.2

Rel. Imp. [%] c 28.4 28.3 �23.6 �28.6 �79.0

m 16.2 �47.3 14.2 �14.1 �9.2

TABLE IV. Average word recognition accuracies (WRA) and relative

reduction of word error rates (relative improvement) compared to the

MFCC baseline with clean (c) and multi (m) condition training on the

Aurora 2 task for the real part, the imaginary part and the absolute values of

the GBFB features.

Modification None (real) Imaginary Absolute

WRA [%] c 66.2 67.0 48.8

m 88.1 87.8 81.8

Rel. Imp. [%] c 28.4 31.6 �59.7

m 16.2 10.7 �42.2
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Sec. II B 4. The aim of this experiment is to estimate the rela-

tive importance of specific modulation frequencies. Figure 7

shows the difference between the recognition scores obtained

with the original and the reduced features. Therefore, low val-

ues correspond to filters with a relatively high contribution to

the recognition scores.

The patterns observed in Fig. 7 show a symmetry with

respect to upward and downward filters (i.e., those with nega-

tive and positive modulation frequencies, respectively). On

average, filters tuned to upward spectro-temporal patterns and

filters tuned to downward spectro-temporal patterns appear to

be equally important for the recognition with clean training.

For multi-condition training the effect of omitting a filter is

smaller (Fig. 7, right), but symmetry of upward and down-

ward filters is not affected. The most important feature is the

output of the DC filter, which encodes the level of the record-

ing averaged over about 300 ms. The DC feature may be seen

as a simple voice activity detector, and its information is not

encoded in any of the other feature channels, as these do not

have a DC component. Its exclusion reduces the average word

recognition accuracy by about 4 percentage points, with

multi-condition training it causes a drop by approximately 0.6

percentage points. The most important modulation frequency

belongs to the purely spectral filter (xn¼ 0 Hz) with the high-

est modulation frequency (xk¼ 0.25 cycles/channel). It

accounts for the finer spectral structure of the log Mel-

spectrogram. We assume that this is the filter that best extracts

information about voicing, as voicing features are represented

by localized patterns that usually do not exceed two frequency

channel and do not exhibit strong temporal changes.

Several filters have a detrimental effect on the overall per-

formance, since their removal from the feature vector results

in an increase of recognition performance: Omitting the filters

with the highest modulation frequencies (xk¼60.25 cycles/

channel and xn¼ 25 Hz) improves the recognition perform-

ance by about 2 percentage points with clean training. The

spectral filter (xn¼ 0 Hz) with the lowest modulation fre-

quency (xk¼ 0.03 cycles/channel) also has a detrimental

effect. This filter accounts for the very coarse spectral shape of

the log Mel-spectrogram averaged over about 300 ms. It

extracts mainly information about the spectral color of the

communication channel. The improvement in overall scores

upon deletion of specific components indicates that feature

selection may further improve the recognition accuracy.

Kanedera et al. (1999) found that temporal modulation

frequencies below 2 Hz and above 16 Hz may be detrimental

for specific ASR tasks. The temporal modulation center fre-

quencies used for the filter bank range from 6.2 Hz to 25 Hz

and are subdivided into spectro-temporal upward and spectro-

temporal downward filters. With GBFB features, an upper

limit of about 18 Hz (cf. Table II) seems to improve perform-

ance with clean condition training from 66.2% to 69.3% over-

all but reduce performance with multi-condition training from

88.1% to 87.5%. The range of modulation frequencies used

with GBFB features is higher than the range found by Kane-

dera et al. (1999). Some temporal modulation frequencies are

only beneficial in combination with certain spectral modula-

tion frequencies. Nemala and Elhilali (2010) found temporal

modulation frequencies from 12 Hz up to 22 Hz to be useful

for robust speech/non-speech recognition in an experiment

that considered spectral and temporal modulation frequencies.

The range of modulation frequencies used with the GBFB is

in line with these findings. It is possible that an interaction

between spectral and temporal modulation frequencies results

in a shift of the specific frequencies important for ASR.

The most frequent temporal modulation frequency in

speech is 4 Hz, but it was not found to be of particular impor-

tance for the recognition of connected digits that spectro-

temporal filters tuned to 4 Hz existed at the feature level. This

does not mean that it is of no importance at all, since temporal

modulation frequencies below 6.2 Hz are captured by the

purely spectral filters and the back-end models changes of this

rate. An example for such a filter is the DC filter that changes

with a temporal rate of up to about 4 Hz (cf. filter transfer

function in Fig. 5) and plays an important role.

Another factor that might affect the overall recognition

accuracy is the number of individual feature components

associated with a spectro-temporal modulation frequency:

The results of the filtering process is a spectro-temporal out-

put with 23 frequency channels; in most cases, not all of

these channels are included in the feature vector to avoid a

high redundancy of feature components. The number of

FIG. 7. Differences in overall accuracy on the

Aurora 2 digit recognition task when omitting

the output of filters with a particular spectro-

temporal modulation frequency for multi and

clean condition training. The difference in

accuracy is encoded in grayscale and displayed

at the position of the corresponding center

modulation frequency of the omitted filter.

Filters that are not used for feature extraction

are marked with an X.
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selected channels ranges from 1 (for low values of xn and

xk) to 23 (for high values of xn and xk). Since modulation

filters are disregarded in the band-stop experiment, the num-

ber of components ranges from 288 to 310, which might

have an effect on the overall performance.

III. ROBUSTNESS OF THE GABOR FILTER BANK
FEATURES

In this part of the study the Gabor filter bank features

are compared to several traditional feature extraction

schemes in terms of robustness against extrinsic and intrinsic

variability of speech. It is structured as follows: First, in

Sec. III A the traditional feature extraction schemes which

serve as reference are introduced. Then, in Sec. III B the

experiments used for evaluation are presented. Finally, the

results are presented and discussed in Sec. III C.

A. Baseline features

Standard Mel-frequency Cepstral Coeffient (MFCC)

(Davis and Mermelstein, 1980) features are used as a refer-

ence. MFCCs are calculated by applying a discrete cosine

transform to spectral slices of the Mel-spectrogram. The coef-

ficients, encoding the spectral envelope of quasi-stationary

speech segments, are then used as features for ASR. The

Rastamat toolbox for Matlab (Ellis, 2005) is used to generate

13-dimensional MFCC features (MFCCs), which resemble

the features obtained with the HTK package (Young et al.,
2001). Adding the first and second discrete derivative results

in 39-dimensional features. As a second reference, cepstral

mean subtraction (CMS), a blind deconvolution technique

which Schwarz et al. (1993) found to improve recognition ac-

curacy and robustness to changes of communication channel

characteristics is applied to the MFCCs; these features are

referred to as MFCC CMS. The baseline MFCC features on

the Aurora 2 task from Pearce and Hirsch (2000) are referred

to as MFCC WI007. As a third reference, 8th order Percep-

tual Linear Prediction (PLP) (Hermansky, 1990) features

that have undergone additional modulation band pass filter-

ing, are calculated with the Rastamat toolbox. The filtering

emphasizes the relative differences between spectra, hence,

these features are referred to as RASTA-PLP features (Her-

mansky and Morgan, 1994). RASTA-PLPs have been

reported to be robust, especially in the presence of channel

distortions (Hermansky and Morgan, 1994). The addition of

delta and acceleration coefficients results in 27-dimensional

feature vectors.

B. Experiments

In this section, the experimental setups that are

employed to evaluate the robustness against extrinsic and

intrinsic variability in speech are presented.

1. Effect of extrinsic factors (Aurora 2 and
Numbers95)

For evaluation of robustness against extrinsic variability

the Aurora 2 framework (Sec. II B 1) is used. Since several

parameters of the GBFB features were optimized with the

Aurora 2 framework, additional experiments are performed

with a different speech corpus and a different state-of-the-art

back end. The aim of this experiment is to check whether the

results for GBFB features on the Aurora 2 task translate to a

different ASR setup without further adaptation. The speech

database chosen was NUMBERS95 (Cole et al., 1995) that

contains strings of spoken numbers collected over telephone

connections. The data consists of zip codes and street num-

bers, extracted from thousands of telephone dialogues. In

addition, this corpus contains data from male and female

American-English speakers of different ages. Following the

experimental setup from Zhao and Morgan (2008), the corpus

was divided in a training set (with 3590 utterances which

approximates to 3 h of data) and a testing set (1227 utterances

or 1 h of data). There are two experimental conditions for the

testing set; one contains all testing-set utterances in clean con-

dition; the other contains the utterances in noise-added condi-

tions. The noise-added test set is created using the principles

delineated in the Aurora 2 task (Pearce and Hirsch, 2000)

using noises of different signal-to-noise ratios from the

NOISEX-92 collection (Varga and Steeneken, 1993).

Features were mean and variance normalized and used to

train the GMM/HMM recognizer Decipher developed by

Stanford Research International (SRI). This state-of-the-art

system is used to compare spectro-temporal and other features

against a competitive baseline. Gender-independent, within-

word triphone HMM models were based on a phone model

comprising 56 consonants and vowels. Parameters were

shared across 150 states clustered with a phonetic decision

tree, and a diagonal-covariance GMM with 16 mixture com-

ponents modeled the observation distribution. Maximum

Likelihood estimation was used to estimate the parameters.

Features are used either as direct input to Decipher, or proc-

essed in a Tandem system (Hermansky et al., 2000) that uses

a multi-layer perceptron (MLP) to estimate the phone poste-

rior probabilities for each feature frame. The posteriors are

then log-transformed and decorrelated with a principal com-

ponent analysis, in order to match the orthogonality assump-

tion of the HMM decoder. For experiments that employ

MLP-processing, the training of the neural net was carried out

with phonetically labeled digit sequences from Numbers95

training set. The phoneme labels were obtained from forced

alignment. The MLP used 9 frames of temporal context which

resulted in 9� 331¼ 2927 input units, 160 and 56 units were

used for the hidden and output layer, respectively. For the last

set of experiments, 13-dimensional MFCC features with delta

and double-delta features were appended to the MLP-

transformed Gabor features, resulting in 71-dimensional fea-

ture vectors, since this has been reported to increase accura-

cies in other research that used spectro-temporal features as

input to ASR (Zhao and Morgan, 2008). The results for the

MFCC, MFCC CMS, RASTA-PLP and GBFB features are

presented, compared and discussed in Sec. III C 1 on the

Aurora 2 task, and in Sec. III C 2 on the Numbers95 task.

2. Effect of intrinsic factors (OLLO framework)

To evaluate the robustness against intrinsic variability

in speech, an experimental framework that aims at the
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analysis of factors such as speaking style, effort, and rate is

proposed. In this framework the sensitivity of different fea-

ture types against such variabilities is evaluated by perform-

ing experiments with a mismatch between the training and

test data. The degradation in performance quantifies the

robustness against a specific mismatch. A statistical test,

McNemar’s Test as suggested by Gillick and Cox (1989), is

employed to test the results for significant differences

between the feature types.

The speech database used for this framework is the Old-

enburg Logatome Corpus (OLLO) (Wesker et al., 2005),

which consists of nonsense vowel-consonant-vowel (VCV)

and consonant-vowel-consonant (CVC) logatomes with

identical outer phonemes (e.g., [p u p] or [a p a]). The data-

base contains 150 different logatomes (70 VCVs and 80

CVCs), spoken by German speakers in different speaking

styles. During the recordings, the speakers were asked to

produce the utterances normally, with varied speaking effort

(loud and soft speaking style), varied speaking rate (fast and

slow), and with rising pitch, which is referred to as category

“questioning.” Three repetitions of each logatome in each

speaking style were collected in order to obtain a sufficient

amount of ASR training data. This resulted in 150

(logatomes)� 6 (speaking styles)� 3 (repetitions)¼ 2700

utterances per speaker.

For the OLLO framework that we propose to evaluate

robustness against intrinsic variability in speech, speech data

from ten speakers without dialect is used. Six training and

six test conditions are defined, which correspond to the vari-

ous speaking styles contained in the OLLO corpus (fast,

slow, loud, soft, questioning and normal). Training and test-

ing on each condition resulted in 36 individual experiments.

The experiments are carried out using a 10-fold cross valida-

tion, i.e., speech signals of nine speakers are used for train-

ing, and the data of the remaining speaker is used for testing.

This procedure is repeated for all speakers, and the individ-

ual scores are averaged.

As for the Aurora 2 framework, results for MFCC fea-

tures serve as baseline. These are fed to an HMM using HTK

(Young et al., 2001). The HMM is configured as word recog-

nizer, i.e., the classification task is to make a 1-out-of-150

decision based on a dictionary that contains the transcription

of the 150 logatomes. The number of HMM states per loga-

tome is set to 16, which was found to be the optimal value in

pilot experiments for MFCC features. Other parameters, such

as the increase of Gaussian mixtures during training, are cop-

ied from the Aurora 2 setup. Additionally, performance of

MFCC features with CMS and RASTA-PLP features is eval-

uated. Since the PLP part of this algorithm accounts for the

reduction of speaker-dependent information it is interesting

to see whether it improves the robustness against intrinsic

variability. The results are presented in Sec. III C 3.

C. Results and discussion

1. Robustness against extrinsic variability (Aurora 2)

This section presents the results of recognition experi-

ments with GBFB, MFCC, MFCC CMS and RASTA-PLP

features that are carried out with the aim of quantifying the

robustness against extrinsic variability (additive noise and

channel distortions) on the Aurora 2 task (employing the

HTK recognizer).

Absolute results for the various feature types are pre-

sented in Table V. In terms of average word recognition

accuracies (WRAs) GBFB features outperform MFCC and

RASTA- PLP features with clean (multi) condition training

by 8 (1) percentage points and 2 (3) percentage points,

respectively. With cepstral mean subtraction MFCC features

achieve a slightly higher average WRA than GBFB features.

The overall relative improvement over MFCC WI007 stand-

ard features, which is calculated as described in Sec. II B 1

is presented in Table VI. GBFB features improve the WER

of standard MFCC WI007 features by more than 16% on av-

erage with multi condition training and by 28% on average

with clean condition training. The use of MFCCs with CMS

improves the baseline by 12% on average with multi condi-

tion training and by 27% on average with clean condition

training. When concatenating GBFB features with MFCC

features from the Rastamat toolbox with CMS applied, a fur-

ther improvement of a few percent is achieved, indicating

that these feature types carry complementary information.

RASTA-PLP features outperform the standard MFCC

WI007 features by about 14% with clean condition training,

but with multi condition training they perform 31% worse

than MFCCs.

The relative improvements over the baseline for the test

sets A, B, and C are also presented in Table VI. In addition

to the reference features, the performance of GBFB features

concatenated with MFCC CMS features is shown. GBFB

features outperform the MFCC WI007 baseline in all test

conditions (test sets A, B and C). For multi-condition train-

ing, the relative improvements for test set A and test set B

are comparable with improvements of about 13%, which

indicates that GBFB features generalize as well as MFCC

features with respect to mismatches in noise types when

training with noisy data. For test set C, the relative improve-

ment for GBFB features is more distinctive with about 28%.

MFCC features with CMS improve the WI007 baseline in

test set B and C, i.e., when noise or communication channel

characteristics changed compared to the training data. The

improvements with test set C (channel distortions) for

MFCCs with CMS is smaller than with GBFB features.

RASTA-PLP features perform worse than the MFCC WI007

baseline with multi condition training on all test sets. For

test set C (channel distortions), the difference between

RASTA-PLP and MFCC features is smaller than on test set

A and B.

For clean training, the differences between GBFB and

MFCC WI007 features are larger compared to multi-

condition training with a relative decrease of the WER for

GBFB features in the range of 15% to 40%. With MFCC

CMS features and clean condition training the improvements

are also larger compared to the multi condition training. The

smaller relative improvements in test set C are a result of the

relatively high performance of the MFCCs (cf. Table V).

RASTA-PLP are consistently better than the baseline for

clean condition training, but do not improve results with

multi-condition training.
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The standard deviation of recognition scores for various

noise conditions is reported as a measure for the stability of

scores in the last column of Table V. The results for clean

condition training are of special interest in this case, since

they can be interpreted as the robustness in the presence of

unknown noise sources. The standard deviation for MFCCs

(7.4 percentage points) is approximately twice as high as for

GBFB and three times as high as for RASTA-PLP features

(3.4 percentage points and 2.3 percentage points, respec-

tively). This indicates that GBFB and RASTA-PLP features

are less sensitive to mismatches between training and test

data than MFCC features. When applying CMS to the

MFCC features the standard deviation decreases to the level

of GBFB features. For multi-condition training, the standard

deviations are smaller than 2 percentage points, with only

small differences between the feature types but MFCCs with

CMS, which show a slightly higher standard deviation.

A comparison of the relative improvements of GBFB

features over MFCC features in Table VI with the absolute

results in Table V shows that the differences between both in

terms of WRAs is rather small. This suggests that the

improvements of GBFB over MFCC features are obtained at

high SNRs. This is investigated further by separating the

WRA results by SNRs. The average WRAs for each feature

type and for each SNR are depicted in Fig. 8. The ordinate is

scaled as a logarithmic error axis and labeled with the corre-

sponding WRA. The distance of two horizontal lines corre-

sponds to a halving/doubling the WER so that the results in

terms of relative improvements are projected linearly, i.e.,

they are proportional to the relative improvement of the

averages over all noise conditions.

For all feature types, a strong decrease of the WRA is

observed when the noise level is raised, with 95% WRA for

clean utterances to down to scores below 30% at an SNR of

�5 dB. The major differences between the feature types are

observed at high SNRs (20 dB to 5 dB). For clean training,

the decrease in performance is more pronounced than for

multi-condition training. While using noisy training data and

testing with clean utterances results in lower scores com-

pared to clean training, the overall performance (tested over

multiple SNRs and noise types) is improved with multi-

condition training as expected. When training with clean

utterances, RASTA-PLP features outperform the MFCC

WI007 baseline at almost all SNRs, which confirms the ob-

servation that RASTA-PLPs are more robust than short-term

spectrum based features in unknown noise conditions (Her-

mansky and Morgan, 1994). However, for multi-condition

training, which allows the ASR system to adapt to different

noise types, the MFCCs produce higher scores than RASTA-

PLPs. GBFB features improve the scores of MFCC WI007

and RASTA features at almost all SNRs: The robustness

TABLE V. Recognition accuracies in percent for GBFB, MFCC WI007, MFCC CMS, and RASTA-PLP features on the Aurora 2 task for different noise con-

ditions, average word recognition accuracies for each test set and standard deviation over all noise conditions. The average values presented here are obtained

by averaging over SNRs from 0 dB to 20 dB.

Test set A Test set B Test set C

Average rmsSubway Babble Car Exhibition Restaurant Street Airport Station Subway m Street m

GBFB multi 89.0 88.0 86.1 88.1 90.0 88.2 90.7 85.9 88.8 86.3 88.1 1.62

average 87.8 88.7 87.6

clean 70.9 67.0 60.0 64.3 69.2 64.5 68.9 65.0 68.8 63.4 66.2 3.33

average 65.6 66.9 66.1

RPLP multi 87.5 84.6 83.7 83.7 83.8 84.5 85.6 82.1 87.1 84.3 84.7 1.64

average 84.9 84.0 85.7

clean 64.3 63.1 59.5 59.9 66.3 63.8 66.4 63.1 64.5 63.7 63.5 2.30

average 61.7 64.9 64.1

MFCC multi 89.1 88.4 86.8 80.0 87.8 88.3 86.2 85.7 87.0 1.67

average 88.1 87.2 84.6

clean 66.7 47.8 58.1 62.3 50.0 60.7 49.6 53.1 65.3 66.7 58.1 7.40

average 58.7 53.4 66.0

MFCCCMS multi 90.3 89.8 84.9 88.0 90.0 87.9 91.1 86.7 89.9 87.9 88.7 1.92

average 88.2 88.9 88.9

clean 64.1 67.7 62.2 62.8 71.3 65.6 72.0 67.7 64.2 65.4 66.3 3.35

average 64.2 69.2 64.7

TABLE VI. Relative reduction of the word error rate obtained with GBFB,

MFCC CMS, RASTA-PLP features, and with GBFB features concatenated

with MFCC CMS features compared to the MFCC WI007 baseline for the

test sets A, B and C.

Test

set A

4 conditions

Test

set B

4 conditions

Test

set C

2 conditions

Average

over all

conditions

GBFB clean 22.9 40.6 15.1 28.4

multi 11.4 15.2 27.7 16.1

MFCCCMS clean 15.9 45.5 10.9 26.7

multi 3.6 16.1 19.0 11.6

RPLP clean 2.6 31.4 4.0 14.4

multi �33.3 �40.0 �12.7 �31.9

GBFB and

MFCCCMS

clean 26.3 43.8 18.0 31.6

multi 16.7 24.4 33.0 23.0
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against additive noise is found to be higher than for RASTA

features over a wide range of test conditions (i.e., clean sig-

nals and SNRs from 5 dB to 20 dB), and additionally are

found to outperform the MFCC WI007 baseline for multi

condition training in these test conditions. MFCCs with

CMS and GBFB features perform similarly well. However,

when testing on clean or low-noise signals with multi-

condition training, GBFBs outperform all feature types.

The average relative improvement of GBFB, MFCC

CMS and RASTA-PLP over MFCC WI007 features depend-

ing on the SNR (averaged over all noise conditions) is

depicted in Table VII. The results are comparable to those

presented in Fig. 8. GBFB features outperform MFCCs at all

SNRs. The best improvements are obtained at SNRs above

0 dB SNR, while at low SNRs the differences are negligible.

While RASTA-PLP features outperform MFCCs with clean

training at all SNRs they do not improve MFCC results

when testing on clean data. The relative improvements for

low SNRs (0 dB, �5 dB) are higher than with GBFB features

but still below 6%. This means that RASTA-PLP and GBFB

features are more robust than MFCCs when the noise signal

energy still is about 5 dB below the level of the speech signal

energy. When learning the noise characteristics (multi-con-

dition), GBFB features perform better and RASTA-PLP fea-

tures perform worse than MFCCs, with the greatest

differences in relative improvements at high SNRs. MFCCs

with CMS improve the MFCC WI007 baseline at almost all

SNRs, with the single exception of multi-condition training

and clean testing. When testing on clean data GBFB features

improve the MFCC baseline by more than 6%, while the

baseline was not improved with the other feature types. For

testing on clean speech data, GBFB features improve the

baseline by about 25%.

A 28% relative improvement of GBFB features over the

MFCC baseline is observed when the channel characteristics

of training and testing differ. We assume that MFCCs are

stronger affected by such influences since the spectrogram is

integrated over the full bandwidth, which might be a disad-

vantage compared to the localized GBFBs. Cepstral mean

subtraction seems to alleviate this disadvantage, but not to

the extent that was observed for GBFB features. Further,

considering even higher frequencies (above 4 kHz) could be

beneficial with the Gabor filter bank features. While the

MFCC features would change fundamentally, for the Gabor

filter bank features it would mean an extension to more cen-

ter frequencies. This should be evaluated on a suitable task

in the future.

GBFB features were shown to perform better in the high

SNR range from 20 dB to 5 dB than MFCC and RASTA-PLP

features and equally well at lower SNRs (0 dB and �5 dB) on

the Aurora 2 task, which evaluates robustness of ASR systems

against extrinsic variability. GBFB features also slightly out-

perform MFCC features with CMS. This suggests that the

physiologically inspired representation of speech signals by

GBFB features is more robust to extrinsic variability than

those of MFCCs and RASTA-PLPs over a wide range of

SNRs and is similarly robust to extrinsic variability as MFCC

with CMS. Further, improvements of about 25% for testing

on clean data are observed which points out the beneficial

effect of spectro-temporal information on feature level.

FIG. 8. Recognition accuracies in

percent for GBFB, MFCC and

RASTA-PLP features at different

test SNRs for multi and clean condi-

tion training on the Aurora 2 task.

The ordinate is a logarithmically

scaled WER-axis and labeled with

the corresponding WRA. The dis-

tance of two horizontal lines corre-

sponds halving/doubling the WER.

TABLE VII. Relative reduction of the word error rate obtained with GBFB and RASTA-PLP features compared to the MFCC baseline (averaged over all

noise conditions). Values in the column average are averaged over SNRs from 20 dB to 0 dB.

SNR [dB] 1 20 15 10 5 0 �5 Average

GBFB multi 23.9 23.4 21.0 21.3 13.5 1.7 1.8 16.2

clean 27.0 45.1 45.1 34.9 14.3 2.8 1.5 28.4

RASTA-PLP multi �274.6 �56.4 �38.5 �31.8 �18.4 �14.5 �3.7 �31.9

clean �3.8 16.9 28.4 16.7 4.7 5.3 3.9 14.4

MFCCCMS multi �7.6 5.3 13.4 13.0 16.3 10.1 2.9 11.6

clean 5.5 42.2 45.9 29.85 8.00 7.6 5.2 26.7
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2. Robustness against extrinsic variability
(Numbers95)

In this section the results for the NUMBERS recognition

task, which was conducted with the aim of checking whether

the results from the Aurora 2 task translate to a different ASR

setup, are presented. Absolute and relative results obtained on

the NUMBERS recognition task with the SRI Decipher recog-

nizer are shown in Table VIII. In this scenario, MFCC and

MFCC CMS features perform best, while for GBFB and

RASTA-PLP features relatively high error rates are observed.

A possible reason may be that GBFB features encode up to

400 ms context and RASTA-PLP features up to 200 ms con-

text, and may thus not be suited as well as the MFCCs (up to

100 ms context) for triphone based models.

We then tested if mapping the features to phoneme pos-

teriors, which we assume to be suitable to build phone base

models, by means of a multi-layer perceptron (MLP)

improves the recognition performance. This MLP process-

ing, which was reported to improve results in earlier studies

(Hermansky et al., 2000), almost halved the error rate of

GBFB features without MLP processing for clean testing

and also improved the results with RASTA-PLP features,

but the performance was still below the baseline. Using

MFCCs and MFCCs with CMS in conjunction with MLP

processing leads to small improvements when testing on

noisy data, but not for testing on clean data. The results with

“long-term context” features, i.e., GBFB features and also

RASTA-PLP to a smaller extent, improved much more by

the MLP processing than the results with the already well

performing “short-term context” features. Another reason

for the high error rate with GBFB features may be the high

dimensionality of the features. While the GMM/HTK back

end of the Aurora 2 framework had no problems with high

dimensional features, the Decipher recognizer may be tuned

to the dimensionality of typical feature types, hence per-

forming better with the low dimensional MLP processed

GBFB features.

The improvements over the MFCC baseline that were

observed on the Aurora 2 task with GBFB features do not

translate directly to setups with different back ends. This is

because the back end imposes strong restrictions upon the

statistical characteristics of the used features. These restric-

tions depend on many factors like the training material, the

acoustic model type, and the complexity of the recognizer.

We assume that the shorter triphone models of the Decipher

back end favor features with less temporal context compared

to the whole word models of the HTK recognizer on the

Aurora 2 task. However, adapting the features to the restric-

tions of the back end improves the recognition performance.

GBFB features are long-term context features and seem to

work better with models that can make full use of long-term

context (word models).

The fact that error rates were lower when combining

MFCC and GBFB features for the Aurora 2 task motivated a

combination of MLP-processed features with MFCCs. For

this setup, the MFCC baseline is outperformed by more than

10% (for combinations with MFCCs), and 14–15% for com-

binations with MFCC CMS. We also tested other combina-

tions (such as MLP-processed spectral features that are

combined MFCCs); however, none of these yielded results

above the baseline.

With the Decipher back end, the baseline was not

improved when only using GBFB features, but when using

the features in a Tandem system and combining them with

spectral features, the baseline was outperformed by

14–15%. This result confirms earlier studies that reported

an increase of the robustness of ASR system against addi-

tive noise and channel distortions when using MLP-

processed spectro-temporal features in conjunction with

concatenated MFCCs (Meyer and Kollmeier, 2011a; Zhao

et al., 2009). It also supports the hypothesis that MFCCs

and GBFB features encode complementary information

that is useful for robust ASR.

3. Robustness against intrinsic variability

This section presents the results of recognition experi-

ments with GBFB and baseline features features that are car-

ried out with the aim of quantifying the robustness against

variability due to intrinsic sources (arising from variation in

speaking rate, effort and style). The ASR task is to classify

VCV and CVC utterances from the OLLO database, as

described in Sec. III B 2. The absolute word recognition

accuracies are depicted in Table IX. Scores are presented for

each combination of training and test speaking styles, which

results in 6� 6 individual scores per feature type. RASTA-

PLP and MFCC CMS features produce almost consistently

worse scores than MFCC and GBFB features and are there-

fore not included in Table IX.

When averaging over all scores obtained for mis-

matched training and test conditions (off-diagonal elements

in Table IX), the recognition scores for GBFB and MFCC

features are very similar with 59.3% and 58.8%. RASTA-

PLPs produce an average of 55.6% (not shown) and MFCC

CMS features produce an average of 56.4% (also not

shown). All feature types exhibit similar error patterns,

which are depicted in Fig. 9. Not surprisingly, the best scores

are obtained with matched condition training. Compared to

TABLE VIII. Word error rates for the NUMBERS95 task with SRI’s ASR

system Decipher. Features were either used as direct input to the classifier,

processed with an MLP, or first MLP-processed and then concatenated with

a different feature vector

Absolute WER Rel. imp.

Feat.

dim. Clean

Avg.

noisy Clean

Avg.

noisy

MFCC 39 3.7 19.4 – –

MFCCCMS 39 3.7 17.8 1.1 8.1

RASTA-PLP 27 6.0 23.2 �59.6 �19.7

GBFB 311 9.1 22.9 �142.3 �16.2

MLP (MFCC) 32 4.0 19.2 �7.9 1.0

MLP (MFCCCMS) 32 3.7 16.9 1.1 12.7

MLP (RASTA�PLP) 32 5.7 20.8 �51.1 �7.6

MLP (GBFB) 32 4.6 19.9 �21.9 �2.6

MLP (GBFB) and MFCC 71 3.3 16.8 10.7 13.5

MLP (GBFB) and MFCCCMS 71 3.2 16.6 15.2 14.1
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matched train-test conditions, the word recognition accura-

cies of the mismatched conditions show a degradation of

about 17 percentage points on average. For MFCCs, the cat-

egory “normal” for training yields the highest scores when

considering the average over all six test conditions. For

GBFB features, the category “questioning” for training

yields slightly better (0.6 percentage points) word recogni-

tion accuracies than the category “normal.” When using nor-

mally spoken utterances for the training, the reduction in

WER is roughly �70% when testing on mismatch conditions

(average over all feature types).

For the chosen order of sources of variability in Fig. 9, a

checker board pattern is observed in the upper left part of

each matrix. Relatively high accuracies are obtained for the

training-test pairs (fast, loud) and (slow, soft), which indi-

cates that utterances from these categories share properties

that are embedded in the acoustic models of the HMM dur-

ing training. On the other hand, the pairs (fast, slow), (fast,

soft), (loud, soft) and (loud, slow) yield a score that is

degraded by about 24 percentage points on average (average

over all feature types) compared to the respective matched

condition.

While GBFB and MFCC features perform similarly

well on average, a detailed analysis of the recognition results

with respect to speaking rate, style, and effort reveals sys-

tematic differences. Figure 10 shows in which particular

conditions the differences between MFCC features and

GBFB features are significant, i.e., the p-values are less than

0.01 according to McNemar’s Test as proposed by Gillick

and Cox (1989). The differences in terms of relative

improvement of WER are depicted in Table X. Only the mis-

match conditions (off-diagonal elements) are considered for

the average. These values can be interpreted as the sensitiv-

ity of GBFB features (compared to MFCC results), or the

robustness against intrinsic variability.

The results show that on average GBFB features are

slightly more sensitive against such mismatches (with a

0.2% relative degradation when averaging over all combina-

tions of training and testing). The relative reduction of the

WER with GBFB features compared to MFCCs shows that

MFCCs exhibit a better recognition performance for high

and low speaking rate (categories “fast” and “slow”), while

GBFB features are better suited when the talker changes his

speaking effort (categories “loud” and “soft”). This trend is

consistent both for training and for testing. Interestingly,

when the recognizer is trained with utterances with rising

pitch (“questioning”), GBFB feature perform better than

MFCC features (row “questioning” in Table IX). On the

other hand, when testing is performed with logatomes spo-

ken as question, this results in higher scores with MFCC fea-

tures than with GBFB features (column “questioning” in

Table X).

On average, the performance with MFCC features dete-

riorates by about 70% (relative improvement calculated as

explained in Sec. II B 1), the GBFB features’ performance

drops by about 80% when training and test data categories

mismatch. Compared to MFCCs, GBFB features seem to

perform similarly well on average in the tested mismatching

conditions of intrinsic sources of variability. However, they

appear to be slightly more susceptible to such variations than

MFCCs, since they tend to perform better in matched condi-

tions, which are not considered for averages.

In the presence of intrinsic variation (measured with the

OLLO recognition task, cf. Sec. III B 2) considerable degra-

dations are observed for all feature types. Compared to the

matched condition scores, the average relative increase of

the word error rate is between 70 and 85% (for MFCC and

MFCC CMS features, respectively). In order to analyze the

robustness against intrinsic factors, the scores obtained with

mismatched training are of special interest. In the presence

TABLE IX. Absolute WRA in percent for GBFB and MFCC features on the OLLO logatome recognition task. Averages are calculated over mismatched con-

ditions. Matched conditions are printed in italics and are not considered for averages.

GBFB MFCC

Train | Test Fast Slow Loud Soft Quest. Normal Average Fast Slow Loud Soft Quest. Normal Average

Fast 74.0 47.0 62.7 52.6 49.5 72.7 56.9 72.4 52.2 60.8 49.7 49.4 72.3 56.9

Slow 45.6 76.7 46.5 66.3 39.4 69.9 53.5 51.3 77.5 50.5 66.2 50.0 73.1 58.2

Loud 70.3 56.3 78.7 47.7 50.5 75.6 60.1 68.6 58.9 77.1 43.1 52.5 72.7 59.2

Soft 51.9 64.0 42.9 74.1 49.1 67.7 55.1 50.1 62.7 31.9 71.0 45.0 64.1 50.8

Quest. 61.8 65.7 56.0 68.0 78.3 74.9 65.3 61.0 66.0 54.8 63.9 76.8 72.2 63.6

Normal 70.7 65.7 64.4 66.5 56.0 81.4 64.7 70.6 68.4 61.3 64.4 56.4 79.9 64.2

Average 60.1 59.7 54.5 60.2 48.9 72.2 59.3 60.3 61.6 51.8 57.5 50.6 70.9 58.8

FIG. 9. Logarithmic word error

rates for different training and test-

ing conditions on the OLLO loga-

tome recognition task. The colorbar

indicates the corresponding word

recognition accuracies. (left) GBFB

features; (middle) MFCC features;

(right) RASTA-PLP features.
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of variation caused by intrinsic sources, GBFB and MFCC

features exhibit a comparable overall performance. How-

ever, when individual sources of variability are considered,

the error patterns for both feature types show statistically

significant differences, indicating that these feature types

carry—at least to some extent—complementary information.

Using mismatched conditions in training and testing

shows that the training-test pairs (fast, loud) and (slow, soft)

produce relatively high accuracies. This trend is observed

for all feature types. The combinations (fast, soft) and (slow,

loud) on the other hand produce rather low scores. It may be

that these categories share several acoustic properties, since

speakers, e.g., unconsciously increase their speaking effort

when asked to produce an utterance with high speaking rate.

Such an interaction might also explain the high scores for

the pair (soft, slow).

GBFB features are observed to perform better than

MFCCs when training on utterances pronounced with rising

pitch (category “questioning”), but worse when testing on

utterances of this category. A possible explanation for this

observation is that GBFB features can account for spectral

details such as pitch information. However, to account for

the larger variability caused by changes in pitch, the accord-

ing speech data has to be included in the training material.

For matched training and test conditions, the best aver-

age results are obtained with GBFB features. However,

GBFB features are not found to be more robust than MFCC

features against intrinsic variability, i.e., spectro-temporal

information does not seem to improve robustness against

intrinsic variability in general. The differences observed

between the feature types indicate that the information cap-

tured in the feature calculation process is at least partially

complementary; hence, the combination of these features

(e.g., in a multi-stream framework) could result in an

improvement of the ASR performance.

For RASTA-PLP and MFCC CMS features, relatively

low scores are obtained. The fact that both the training and

testing with the OLLO database are performed with clean

utterances might explain this observation for RASTA-PLP,

since the Aurora 2 experiment showed that these features

only improved the baseline for additive noise and channel

distortions. Moreover, the calculation of RASTA-PLPs

includes temporal filtering, which might be suboptimal for

very short utterances such as the phoneme combinations

used for the OLLO corpus, although GBFB features also

capture temporal information to a comparable extent. For

CMS, an integration over the whole utterance is needed.

Maybe the shortness of the utterances does not allow for a

good estimation of the mean value, thus resulting in a mis-

match that deteriorates performance.

IV. SUMMARY AND FURTHER DISCUSSION

A. Robustness of GBFB features against extrinsic
variability

The performance of a robust speech recognition system

depends on the interaction of its parts. The results presented

in this study show that improvements over a MFCC baseline

can be obtained with physiologically inspired spectro-

temporal features when the back end’s assumptions about

the statistical feature characteristics are met. It can be

assumed that the properties of the Gabor filter bank result in

a filter output with limited redundancy between individual

components and mostly independent features with up to

400 ms of temporal context. Depending on the task and the

back end it may be favorable to apply MLP processing to the

GBFB features in order to meet the back end’s assumptions

about the features. In this case improvements over the unpro-

cessed GBFB features can be expected, but not necessarily

an improvement of a MFCC baseline.

B. Complementary information

The experiments show that the combination of MFCC

CMS and GBFB features, possibly processed with an MLP,

results in a further increase of recognition performance. Pre-

sumably, there most possibly is a part of information impor-

tant for ASR represented in a better suited form by MFCCs

than by GBFB features and vice versa. This also means that

neither MFCC nor GBFB features are sufficient to extract all

the characteristics of human speech.

Earlier studies using spectro-temporal features for ASR

presented evidence that MFCCs and spectro-temporal features

carry complementary information (Meyer and Kollmeier,

FIG. 10. Analysis of differences between the

feature types according to McNemar’s Test.

Black: Significant differences with p< 0.01;

white: Not significant. (left) Differences

between GBFB and MFCC features; (middle)

differences between GBFB and RASTA-PLP

features; (right) Differences between MFCC

and RASTA-PLP features.

TABLE X. Relative improvement of GBFB features over MFCC features

in percent. Scores for matched conditions (diagonal elements of the table,

printed in italics) are not considered for the average values.

Train | Test Fast Slow Loud Soft Questioning Normal Average

Fast þ6 �11 þ5 þ6 þ0 þ2 þ0

Slow �12 �4 �8 þ0 �21 �12.0 �11

Loud þ5 �6 þ7 þ8 �4 þ11 þ3

Soft þ4 þ4 þ16 þ11 þ8 þ10 þ8

Quest. þ2 �1 þ3 þ11 þ6 þ10 þ5

Normal þ0 �9 þ8 þ6 �1 þ8 þ1

Average �0 �5 þ5 þ6 �4 þ4 þ1
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2011a; Zhao et al., 2009). This finding is also supported by

the experiment that analyzed the sensitivity against intrinsic

variation, since the performance obtained with MFCC and

GBFB features significantly differ in many conditions. For

example, cepstral features are found to be better suited for rec-

ognition of fast and slowly spoken utterances, while GBFB

features produce better results when the speaking effort is var-

ied. The results of the multi-stream experiment carried out on

the Aurora 2 task, which improves performance over GBFB

and MFCC CMS features by concatenating them also supports

this finding.

C. Future work

The Gabor filter bank could be used for speech analysis

in order to evaluate the importance of modulation frequen-

cies: The integration of the outputs of the localized Gabor

filters results in a spectro-temporal representation resembling

the original spectrogram. When isolated spectro-temporal

components are removed from the filter bank, their contribu-

tion to speech recognition may be assessed in tests with

human listeners (resembling the ASR band-stop experiments

carried out in this study).

The results investigating intrinsic variation of speech

show that spectro-temporal and purely spectral ASR features

produce significantly different results depending on the spe-

cific source of variability. Further, small improvements over

using GBFB features are achieved when combining them

with MFCC CMS features. Based on these observations, it

may be worthwhile to further investigate methods to com-

bine information from different feature streams, thereby

exploiting the complementary information of the feature

types. The output of the Gabor filter bank also contains

purely spectral output, which may not be required (or even

detrimental) when combined with MFCC features, which

may also be subject of future investigations. Alternatively,

the purely spectral output of the GBFB might be modified to

closely resemble the extraction of cepstral features, which

would effectively integrate the informational content of

MFCCs into Gabor features.

The GBFB features extend naturally to higher frequency

bands. It should be evaluated if this behavior has an advant-

age over MFCC features that always project the whole band-

width of the log Mel-spectrogram.

The parameters of the Gabor filter bank (i.e., the optimal

number of oscillations under the envelope) are optimized on

the Aurora 2 digit recognition task, but also show good per-

formance on the OLLO logatome recognition task. However,

when changing the back end, the GBFB features do not nec-

essarily meet the assumptions made about them and can per-

form worse than traditional features. In this case the

robustness of these systems may be improved by processing

the GBFB features with a MLP and concatenating MFCC

features. This suggests that the proposed GBFB features,

possibly with MLP processing, may be applicable to a wider

range of ASR recognition tasks with the same parameters,

which should be assessed in future experiments. To further

validate the findings, GBFB features should be tested on a

large vocabulary speech recognition task.

It seems that not all of the 311 filter outputs extract use-

ful information. Especially the highest spectro-temporal

modulation frequencies seem to have a negative effect on

the recognition performance. It could be that covering a rec-

tangular region of the modulation domain is not optimal.

Hence, feature selection techniques could further improve

the performance.

V. CONCLUSIONS

The most important findings of this work can be sum-

marized as follows.

(1) The use of spectro-temporal Gabor filter bank (GBFB)

features increases the robustness of ASR systems against

additive noise and mismatches of channel transmission

characteristics (i.e., extrinsic sources of variability) com-

pared to MFCC and RASTA-PLP features. For this, it

can be necessary to process the GBFB features with a

multi-layer perceptron (MLP) and combine them with

MFCCs depending on the task and the back end. A

MFCC baseline was also improved for high SNRs and

clean speech. With a standard GMM/HMM recognizer,

improvements of over 40% with clean training and over

20% with multi training were observed when the GBFB

features were used as direct input to the classifier. A

state-of-the-art baseline system was outperformed by

14–15% when GBFB features were first processed with

a MLP and then combined with MFCC features. These

findings indicate that the proposed feature extraction

scheme results in a good representation of speech signals

for ASR tasks. GBFB and MFCC features were found to

extract partly complementary information regarding ex-

trinsic and intrinsic sources of variability, which may be

exploited in feature stream experiments.

(2) On average, MFCC and GBFB features are similarly

affected by intrinsic variability of speech, while for

RASTA-PLP features and MFCCs with CMS higher

degradations are observed. When analyzing train-test

pairs with unmatched intrinsic variations, the MFCC and

GBFB scores show significant differences, which shows

that the feature types exhibit different strength and weak-

nesses with respect to intrinsic factors.

(3) The analysis of specific modulation frequencies for ASR

with GBFB features shows that temporal modulation fre-

quencies from 6 Hz to 25 Hz and spectral modulation fre-

quencies from 0.03 cycles/channel to 0.25 cycles/channel

are important for robust speech recognition. Besides the

information about the input level, spectral modulation

frequencies of about 0.25 cycles/channel were found to

be especially important for robust speech recognition.

When using spectro-temporal features for ASR, the usa-

ble temporal modulation frequencies are shifted to higher

frequencies than reported in the literature that analyzed

spectral and temporal information separately.
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