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normal hearing in noise using an auditory model®
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This study compares the phoneme recognition performance in speech-shaped noise of a microscopic
model for speech recognition with the performance of normal-hearing listeners. “Microscopic” is
defined in terms of this model twofold. First, the speech recognition rate is predicted on a
phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be
recognized are processed by mimicking elementary parts of human’s auditory processing. The
model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716
(1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a
simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense
speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition
rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures
and of the model’s a-priori knowledge is investigated. The results show that human performance
can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both
training of the recognizer and testing. The best model performance is yielded by distance measures

which focus mainly on small perceptual distances and neglect outliers.
© 2009 Acoustical Society of America. [DOI: 10.1121/1.3224721]
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I. INTRODUCTION

The methods usually used for speech intelligibility pre-
diction are index-based approaches, for instance, the articu-
lation index (AI) (ANSI, 1969), the speech transmission in-
dex (STI) (Steeneken and Houtgast, 1980), and the speech
intelligibility index (SIT) (ANSI, 1997). AI and SII use the
long-term average frequency spectra of speech and noise
separately and calculate an index that can be transformed
into an intelligibility score. The parameters used for the cal-
culation are tabulated and mainly fitted to empirical data.
These indices have been found to successfully predict speech
intelligibility for normal-hearing subjects within various
noise conditions and in silence (e.g., Kryter, 1962; Pavlovic,
1987). The STI is also index-based and uses the modulation
transfer function to predict the degradation of speech intelli-
gibility by a transmission system. All of these approaches
work “macroscopically,” which means that macroscopic fea-
tures of the signal like the long-term frequency spectrum or
the signal-to-noise ratios (SNRs) in different frequency
bands are used for the calculation. Detailed temporal aspects
of speech processing that are assumed to play a major role
within our auditory speech perception are neglected. Some
recent modifications to the SII improved predictions of the
intelligibility in fluctuating noise (Rhebergen and Versfeld,
2005; Rhebergen et al., 2006; Meyer et al., 2007b) and in-
cluded aspects of temporal processing by calculating the SII
based on short-term frequency spectra of speech and noise.
However, even these approaches do not mimic all details of
auditory preprocessing that are most likely involved in ex-
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tracting the relevant speech information. Furthermore, the
model approaches mentioned above are “macroscopic” in a
second sense as they usually predict average recognition
rates of whole sets of several words or sentences and not the
recognition rates and confusions of single phonemes.

The goal of this study is to evaluate a “microscopic”
speech recognition model for normal-hearing listeners. We
define microscopic modeling twofold. First, the particular
stages involved in the speech recognition of normal-hearing
human listeners are modeled in a typical way of psychophys-
ics based on a detailed “internal representation” (IR) of the
speech signals. Second, the recognition rates and confusions
of single phonemes are compared to those of human listen-
ers. This definition is in line with Barker and Cooke (2007),
for instance. In our study, this kind of modeling is aimed at
understanding the factors contributing to the perception of
speech in normal-hearing listeners and may be extended to
other acoustical signals or to understanding the implications
of hearing impairment on speech perception (for an overview
see, e.g., Moore, 2003).

Toward this goal we use an auditory preprocessing
based on the model of Dau er al. (1996a) that processes the
signal waveform. This processed signal is then recognized by
a dynamic-time-warp (DTW) speech recognizer (Sakoe and
Chiba, 1978). This is an approach proposed by Holube and
Kollmeier (1996). The novel aspect of this study compared
to Holube and Kollmeier (1996) is that the influence of dif-
ferent perceptual distance measures used to distinguish be-
tween phonemes within the speech recognizer is investigated
in terms of the resulting phoneme recognition scores. Fur-
thermore, we evaluate the predictions of this model on a
phoneme scale, which means that we compare confusion ma-
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trices as well as overall speech intelligibility scores. This is a
method commonly used in automatic speech recognition
(ASR) research.

A. Microscopic modeling of speech recognition

There are different ways to predict speech intelligibility
using auditory models. Stadler er al. (2007) used an
information-theory approach in order to evaluate prepro-
cessed speech information. This approach predicts the speech
reception threshold (SRT) very well for subjects with normal
hearing for a Swedish sentence test. Another way was pre-
sented by Holube and Kollmeier (1996) who used a DTW
speech recognizer as a back-end to the auditory model pro-
posed by Dau er al. (1996a). They were able to predict
speech recognition scores of a rhyme test for listeners with
normal hearing and with hearing impairment with an accu-
racy comparable to that of Al and STI. Both Stadler et al.
(2007) and Holube and Kollmeier (1996) used auditory mod-
els that were originally fitted to other psychoacoustical ex-
periments, such as masking experiments of non-speech
stimuli, for instance.

Several studies indicate that temporal information is es-
sential for speech recognition. Chi et al. (1999) and Elhilali
et al. (2003), for instance, compared the predictions of a
spectro-temporal modulation index to the predictions of the
STI and showed that spectro-temporal modulations are cru-
cial for speech intelligibility. They concluded that informa-
tion within speech is not separable into a temporal-only and
a spectral-only part but that also joint spectro-temporal di-
mensions contribute to overall performance. Christiansen et
al. (2006) showed that temporal modulations of speech play
a crucial role in consonant identification. For these reasons,
this study uses a slightly modified version of the approach by
Holube and Kollmeier (1996). The modification is a modu-
lation filter bank (Dau and Kohlrausch, 1997) extending the
perception model of Dau er al. (1996a), which gives the
input for the speech recognition stage. It provides the recog-
nizer with information about the modulations in the different
frequency bands. The whole auditory model is based on psy-
choacoustical and physiological findings and was successful
in describing various masking experiments (Dau e al.,
1996b), modulation detection (Dau and Kohlrausch, 1997),
speech quality prediction (Huber and Kollmeier, 2006), and
aspects of timbre perception (Emiroglu and Kollmeier,
2008). Using a speech recognizer subsequently to the audi-
tory model, as proposed by Holube and Kollmeier (1996),
allows for predicting the SRT of an entire speech test. This
approach can certainly not account for syntax, semantics,
and prosody that human listeners take advantage of. To rule
out these factors of human listeners’ speech recognition, in
the experiments of this study nonsense speech material is
presented in a closed response format. The use of this speech
material provides a fair comparison between the performance
of human listeners and the model (cf. Lippmann, 1997). Fur-
thermore, a detailed analysis of recognition rates and confu-
sions of single phonemes is possible. Confusion matrices can
be used in order to compare phoneme recognition rates and
phoneme confusions between both humans and model re-
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sults. Confusion matrices, like those used by Miller and
Nicely (1955), can also be used to compare recognition rates
between different phonemes provided that systematically
composed speech material such as logatoms (short sequences
of phonemes, e.g., vowel-consonant-vowel-utterances) is
used.

The nonsense speech material of the Oldenburg logatom
(OLLO) corpus (Wesker et al., 2005), systematically com-
posed from German vowels and consonants, is used for this
task. This corpus was used in a former study (cf. Meyer er
al., 2007a) to compare human’s speech performance with an
automatic speech recognizer. The OLLO speech material in
the study of Meyer et al. (2007a) allowed excluding the ef-
fect of language models that are often used in speech recog-
nizers. Language models store plausible possible words and
can use this additional information to crucially enhance the
performance of a speech recognizer. Nonsense speech mate-
rial was also used, for instance, in speech and auditory re-
search to evaluate speech recognition performance of hearing
impaired persons (Dubno et al., 1982; Zurek and Delhorne,
1987) and to make a detailed performance comparison be-
tween automatic and human speech recognition (HSR)
(Sroka and Braida, 2005). Furthermore, nonsense speech ma-
terial was used, for instance, to evaluate phonetic feature
recognition (Turner er al., 1995) and to evaluate consonant
and vowel confusions in speech-weighted noise (Phatak and
Allen, 2007).

B. A-priori knowledge

A model for the prediction of speech intelligibility
which uses an internal ASR stage deals with the usual prob-
lems of such ASR systems: error rates are much higher than
those of normal-hearing human listeners in clean speech (cf.
Lippmann, 1997; Meyer and Wesker, 2006) and in noise
(Sroka and Braida, 2005; Meyer et al., 2007a). Speech intel-
ligibility models without an ASR stage, e.g., the SII, are
provided with more a-priori information about the speech
signal. The SII “knows” which part of the signal is speech
and which part of the signal is noise because it gets them as
separate inputs, which is an unrealistic and “unfair” advan-
tage over models using an ASR stage.

For modeling of HSR the problem of too high error rates
when using a speech recognizer can be avoided using an
“optimal detector” (cf. Dau et al., 1996a) which is also used
in many psychoacoustical modeling studies. It is assumed
that the recognizing stage of the model after the auditory
preprocessing has perfect a-priori knowledge of the target
signal. Limitations of the model performance are assumed to
be completely located in the preprocessing stage. This strat-
egy can be applied to a speech recognizer using template
waveforms (for the training of the ASR stage) that are iden-
tical to the waveforms of the test signals except for a noise
component constraining the performance. Holube and Koll-
meier (1996) applied an optimal detector in form of a DTW
speech recognizer as a part of their speech intelligibility
model using identical speech recordings that were added
with different noise passages for the model training stage and
for recognizing. Hant and Alwan (2003) and Messing er al.
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(2008) also used this “frozen speech” approach to model the
discrimination of speech-like stimuli. Assuming perfect
a-priori knowledge using an optimal detector (i.e., using
identical recordings as templates and as test items) is one
special case of modeling human’s speech perception. An-
other case is using different waveforms for testing and train-
ing, thus assuming only limited knowledge about the target
signal. This case corresponds not to an optimal detector but
to a limited one. The latter is the standard of ASR; the former
is widely used in psychoacoustic modeling. In this study, we
use both the optimal detector approach and a typical ASR
approach. In this way it is possible to investigate how pre-
dictions of these two approaches differ and whether the first
or the second method is more appropriate for microscopic
modeling of speech recognition.

C. Measures for perceptual distances

Because the effects of higher processing stages (like
word recognition or use of semantic knowledge) have been
excluded in this study by the use of nonsense speech mate-
rial, it is possible to focus on the sensory part of speech
recognition. As a working hypothesis we assume that the
central human auditory system optimally utilizes the speech
information included in the IR of the speech signal. This
information is used to discriminate between the presented
speech signal and other possible speech signals. We assume
that the auditory system somehow compares the incoming
speech information to an internal vocabulary “on a percep-
tual scale.” Therefore, the following questions are of high
interest for modeling: what are the mechanisms of compar-
ing speech sounds and what is the best distance measure, on
a perceptual scale, for an optimal exploitation of the speech
information?

For the perception of musical tones Plomp (1976) com-
pared the perceived similarity of tones to their differences
within an equivalent rectangular bandwidth (ERB) sound
pressure level spectrogram using different distance measures.
Using the absolute value metric, he found higher correlations
than using the Euclidean metric. For vowel sounds, however,
he found a high correlation using the Euclidean metric.
Emiroglu (2007) also found that the Euclidean distance is
more appropriate than, e.g., a cross-correlation measure for
comparison of musical tones. The Euclidean distance was
also used by Florentine and Buus (1981) to model intensity
discrimination and by Ghitza and Sondhi (1997) to derive an
optimal perceptual distance between two speech signals. Al-
though the Euclidean distance was preferred by these authors
for modeling the perception of sound signals, especially of
speech, it still seems to be useful in this study to analyze the
differences occurring on the model’s “perceptual scale.” By
using an optimal distance measure, deduced from the empiri-
cally found distribution of these differences, the model rec-
ognition performance can possibly be optimized.

Il. METHOD

A. Model structure
1. The perception model

Figure 1 shows the processing stages of the perception
model. The upper part of this sketch represents the training
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FIG. 1. Scheme of the perception model. The time signals of the template
recording added with running noise and the time signal of the test signal
added with running noise are preprocessed in the same effective “auditory-
like” way. A gammatone filterbank (GFB), a haircell (HC) model, adaptation
loops (ALs), and a modulation filterbank (MFB) are used. The outputs of the
modulation filterbank are the internal representations (IRs) of the signals.
They serve as inputs to the Dynamic-Time-Warp (DTW) speech recognizer
that computes the “perceptual” distance between the IRs of the test logatom
and the templates.

procedure. A template speech signal with optionally added
background noise serves as input to the preprocessing stage.
The preprocessing consists of a gammatone-filterbank (Hoh-
mann, 2002) to model the peripheral filtering in the cochlea.
27 gammatone filters are equally spaced on an ERB-scale
with one filter per ERB covering a range of center frequen-
cies from 236 Hz to 8 kHz. In contrast to Holube and Koll-
meier (1996), gammatone filters with center frequencies
from 100 to 236 Hz are omitted because these filters are as-
sumed not to contain information that is necessary to dis-
criminate different phonemes. This is consistent with the fre-
quency channel weighting within the calculation of the SII
(ANSI, 1997) and our own preliminary results. A hearing
threshold simulating noise that is spectrally shaped to human
listeners’ audiogram data (according to IEC 60645-1) is
added to the signal before it enters the gammatone-filterbank
(GFB) (cf. Beutelmann and Brand, 2006). The noise is as-
sumed to be 4 dB above human listeners’ hearing threshold
for all frequencies, as proposed by Breebaart et al. (2001).!
Each filter output is half-wave rectified and filtered using a
first order low pass filter with a cut-off frequency of 1 kHz
mimicking a very simple hair cell (HC) model. The output of
this HC model is then compressed using five consecutive
adaptation loops (ALs) with time constants as given in Dau
et al. (1996a) (1;=5ms, 7,=50ms, =129 ms, 74
=253 ms, and 75=500 ms). These ALs compress stationary
time signals approximately logarithmically and emphasize
on- and offsets of non-stationary signals. Furthermore, a
modulation filterbank (MFB) according to Dau and Kohl-
rausch (1997) is used. It contains four modulation channels
per frequency channel: one low pass with a cut-off frequency
of 2.5 Hz and three band passes with center frequencies of 5,
10, and 16.7 Hz. The bandwidths of the band pass filters are
5 Hz for center frequencies of 5 and 10 Hz, and 8.3 Hz for
the band pass with center frequency of 16.7 Hz. The output
of this model is an IR that is downsampled to a sampling
frequency of 100 Hz. The IR thus contains a two-
dimensional feature-matrix at each 10 ms time step consist-
ing of 27 frequency channels and four modulation frequency
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channels. The elements of this matrix are given in arbitrary
model units (MU). Without the MFB 1 MU corresponds to
1 dB sound pressure level (SPL).

2. The DTW speech recognizer

The IR is passed to a DTW speech recognizer (Sakoe
and Chiba, 1978) to “recognize” a speech sample. This DTW
can be used either as an optimal detector by using a configu-
ration that contains perfect a-priori knowledge or as a lim-
ited detector by withholding this knowledge (for details
about these configurations see below). The DTW searches
for an optimal time-transformation between the IRs of the
template and the test signal by locally stretching and com-
pressing the time axes.

The optimal time-transformation between two IRs is
computed by first creating a distance matrix D. Each element
D(i,j) of this matrix is given by the distance between the
feature-matrices of the template’s IR (IR ¢y,) at time index i
and the feature-matrix of the test item’s IR (IR.) at time
index j. Different distance measures are possible in this pro-
cedure (see below). As a next step a continuous “warp path”
through this distance matrix is computed (Sakoe and Chiba,
1978). This warp path has the property that averaging the
matrix elements along the warp path results in a minimal
overall distance. The output of the DTW is this overall dis-
tance and thus is a distance between these IRs. From an
assortment of possible templates the template with the small-
est distance is chosen as the recognized one.

3. Distance measures

In a first approach the Euclidean distance

2 E (IRtempl(i’f’fmod) - IRtest(jzf’fmod))z
/ }nod f
(1)

between the feature-vectors IR ¢y and IR o was used with f
denoting the frequency channel and f,,4 denoting the
modulation-frequency channel of the IRs (Jiirgens et al.,
2007). In many studies this Euclidean distance is used when
comparing perceptual differences (e.g., Plomp, 1976; Holube
and Kollmeier, 1996). The Euclidean distance measure im-
plies a Gaussian distribution of the differences between tem-
plate and test IR.

As an example, Fig. 2 panel 1 shows the normalized
histogram of differences Ad between the IRs (IRlempl and
IR of two different recordings of the logatom /ada:/:

Ad(f?fmod’ivj) = IRtempl(i’f’med) - IRlest(j’f’fmod) . (2)

In this example, the logatoms were spoken by the same male
German speaker and mixed with two passages of uncorre-
lated ICRA1-noise (Dreschler et al., 2001) at 0 dB SNR. The
ICRAl1-noise is a steady-state noise with speech-shaped
long-term spectrum. Note that Ad corresponds to all differ-
ences occurring within a distance matrix, even those that are
not part of the final warp path. However, the shape of the
histogram is typical of almost all speakers and all SNRs. To
investigate the shape of the histogram of differences Ad be-

Dgyena(inj) =
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FIG. 2. (Color online) Distribution of differences (in MU) between IRs of
two different recordings of the logatom /ada:/. The recordings were spoken
by the same male German speaker with “normal” speech articulation style
and mixed with ICRAI-noise at 0 dB SNR. A Gaussian, a two-sided-
exponential, and a Lorentz-function were fitted to the data, respectively.
Panel 1: complete distribution; panel 2: detail (marked rectangular) of panel
1.

tween these two IRs a Gaussian probability density function
(PDF)

1 1 Ad,—Ad\?
ot 30 = MY
\1’2770' 2 g

is fitted to the distribution which corresponds to the Euclid-
ean metric [Eq. (1)] and a two-sided exponential PDF

PDF,,(Ad) = RS exp( Adyy = Ad ‘ ) (4)
20 o
and a Lorentzian PDF
1 1
PDFipe(Ad) = s (5)
gl ]

are also fitted to the distribution, respectively. Two fitting
parameters, the width of the fitted curve given by o and the
position of the maximum Ad,,,, must be set. The fits in Fig.
2 panel 1 show that the distribution is almost symmetrical
with Ad,,,,=0 and that high distances of about 50 MU or
more are very much more frequent than expected when as-
suming Gaussian distributed data. Especially, very high dis-
tances of about 80 MU or more (cf. Fig. 2 panel 2) are
present in the tail of outliers. The Lorentzian PDF provides a
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better fit than the Gaussian function. However, it slightly
overestimates the amount of outliers. The two-sided expo-
nential function provides the best fit to the data. The two-
sided exponential function is capable of reproducing the
shape of the mean peak at 0 MU as well as the shape of the
tail of outliers.

By taking the negative logarithm of a PDF [Egs. (3)—(5)]
and summing up the distances across all frequency channels
and modulation frequency channels, a distance measure is
obtained (cf. Press et al., 1992) that can be used within the
speech recognition process. This gives the Euclidean dis-
tance metric [Eq. (1)] (for Gaussian distributed data), the
absolute value distance metric

Dabs(iJ) = 2 E (|IRtempl(i’f’fmod) - IRtest(j»fvfmod)
Smod [

), (6)

and the Lorentzian distance metric

DLoremz(i’j) = 2 2 IOg[l + %(IRtempl(i’f’fmod)
Jmod S

~ TRy (s frmod))* - (7

Note that the prefactors that normalize the PDFs are not in-
cluded within Egs. (1), (6), and (7) because they represent a
constant offset in the distance metric which has no effect on
the position of the minimum of the overall distance. The
parameter o is set to 1 MU for simplicity. For Egs. (1) and
(6) the value of o is not relevant to finding the best warp path
through the distance matrix (i.e., solving a constrained mini-
mizing problem). However, in Eq. (7), o is relevant to find-
ing the best warp path because it cannot be factored out as it
can for the Euclidean and the absolute value metric. Choos-
ing o equal to 1 MU results in a very flat behavior of the
distance metric for middle and high distances. Other values
of o in the range from 60 to 0.1 MU showed only minor
influence to the performance results in preliminary experi-
ments.

A hypothesis for the present study is that using either
Eq. (6) or Eq. (7) instead of the Euclidean distance [Eq. (1)]
within the DTW speech recognition process may better ac-
count for the characteristic differences of the IRs and may
improve matching.

B. Speech corpus

Speech material taken from the OLLO speech corpus
(Wesker et al., 2005) is used in this study. The corpus con-
sists of 70 different vowel-consonant-vowel (VCV) and 80
consonant-vowel-consonant (CVC) logatoms composed of
German phonemes. The first and the last phoneme of one
logatom are the same. The middle phonemes of the logatoms
are either vowels or consonants which are listed below (rep-
resented with the International Phonetic Alphabet, IPA,
1999).

¢ Consonants:

Ipl, Itl, I/, Ibl, [dl, 1gl, Isl, If], IvI, Ind, Im/, [f1], Its/, /1]
e Vowels:

lal, la:/, lel, lel, hl, fil, Ial, lol, [ul, I/

J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009

Consonants are embedded in the vowels /a/, /e/, I/, 13/,
and /u/, respectively, and vowel phonemes are embedded in
the consonants /b/, /d/, /f/, /g/, I/, Ip/, /s/, and /t/, respec-
tively.

Most of these logatoms are nonsense in German.” The
logatoms are spoken by 40 different speakers from four dif-
ferent dialect regions in Germany and by ten speakers from
France. The speech material covers several speech variabili-
ties such as speaking rate, speaking effort, different German
dialects, accent, and speaking style (statement and question).
In the present study, only speech material of one male Ger-
man speaker with no dialect and with “normal” speech ar-
ticulation style is used.

C. Test conditions

Calculations with the perception model as well as mea-
surements with human listeners were performed under highly
similar conditions.

The same recordings from the logatom corpus were
used. The logatoms were arranged into groups in which only
the middle phoneme varied. With this group of alternatives a
closed testing procedure was performed. This means that
both the model and the subject had to choose from identical
groups of logatoms. This allowed for a fair comparison of
human and modeled speech intelligibility because the hu-
mans’ semantic and linguistic knowledge had no appreciable
influence. Furthermore, it allowed the recognition rates and
confusions of phonemes to be analyzed. The speech wave-
forms were set to 60 dB SPL. Stationary noise with speech-
like long-term spectrum (ICRAl-noise, Dreschler et al.,
2001) downsampled to a sampling frequency of 16 kHz was
added to the recordings and 400 ms prior to the recording.
The whole signal was faded in and out using 100 ms
Hanning-ramps. After computing the IR of the speech signals
as described in Secs. II A and II C, the part of it correspond-
ing to the 400 ms noise prior to the speech signal was de-
leted. This was done in order to give only the information
required for discriminating phonemes to the speech recog-
nizer and not the preceding IR of the preceding background
noise.

D. Modeling of a-priori knowledge

Two configurations of a-priori knowledge of the speech
recognizer were realized.

* In configuration A five IRs per logatom calculated from
five different waveforms were used as templates. The
waveforms were randomly chosen from the recordings of
one single male speaker with normal speech articulation
style. None of the five waveforms underlying these IRs
(the vocabulary) was identical to the tested waveform. The
logatom yielding the minimum average distance between
the IR of the test sample and all five IRs of the templates
was chosen as the recognized one. This limited detector
approach mimics a realistic task of automatic speech rec-
ognizers because the exact acoustic waveform to be recog-
nized was unknown.

* Model configuration B used a single IR per logatom as
template. The waveform of the correct response alternative
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was identical to the waveform of the test signal. Thus, the
resulting IRs of test signal and the correct response alter-
native differed only in the added background noise and
hearing threshold simulating noise that were uncorrelated
in time. In contrast to configuration A, this configuration
disregards the natural variability of speech. Thus, it as-
sumes perfect knowledge of the speech template to be
matched using the DTW algorithm and corresponds to an
optimal detector approach.

The calculation was performed ten times using different pas-
sages of background noise and hearing threshold simulating
noise according to the individual audiograms of listeners par-
ticipating in the experiments. The whole calculation took
100 h for configuration A (ten times for 150 logatoms at nine
SNR values) and 13 h for configuration B on an up to date
standard PC.

E. Subjects

Ten listeners with normal hearing (seven male, three fe-
male) aged between 19 and 37 years were employed. Their
absolute hearing threshold for pure tones in standard audi-
ometry did not exceed 10 dB hearing level (HL) between
250 Hz and 8 kHz. Only one threshold hearing loss of 20 dB
at one audiometric frequency was accepted.

F. Speech tests

The recognition rates of 150 different logatoms were
assessed using Sennheiser HDA 200 headphones in a sound-
insulated booth. The calibration was performed using a
Briiel&Kjaer (B&K) measuring amplifier (Type 2610), a
B&K artificial ear (Type 4153), and a B&K microphone
(Type 4192). All stimuli were free-field-equalized using an
FIR-filter with 801 coefficients and were presented diotically.
SNRs of 0, =5, =10, —15, and —20 dB were used for the
presentation to human listeners. For each SNR a different
presentation order of the 150 logatoms was randomly cho-
sen. For this purpose, the 150 recordings were split into two
lists, and the order of presentation of the recordings within
the two lists was shuffled. Then all ten resulting lists of all
SNRs were randomly interleaved for presentation. Response
alternatives for a single logatom had the same preceding and
subsequent phoneme (closed test); hence, the subject had to
choose either from 10 (CVC) or 14 (VCV) alternatives. The
subject was asked to choose the recognized logatom from the
list and was asked to guess if nothing was understood. The
order of response alternatives shown to the subject was
shuffled as well. Before the main measurement all subjects
were trained with a list of 50 logatoms.

For characterizing the mean intelligibility scores across
all logatoms the model function

l1-¢
1 +exp(4s(SRT-L)

W(x) = )t 8 (8)
was fitted to the mean recognition rate (combined for CVCs
and VCVs) for each SNR by varying the free parameters
SRT and s (slope of the psychometric function at the SRT).
The SRT is the SNR at approximately 55% recognition rate
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FIG. 3. (Color online) Panel 1: Psychometric function (recognition rate
versus SNR) of ten normal-hearing listeners using logatoms in ICRAI-
noise. Error bars correspond to the inter-individual standard deviations
across subjects. Lines show the fit by Eq. (8). Panel 2: Psychometric func-
tion of the perception model with configurations A and B derived with the
same utterances of the OLLO speech corpus as for the measurement. The
measured psychometric function (taken from panel 1) is additionally shown
for comparison as gray line (HSR). For a further comparison, data of Meyer
et al. (2007a) are plotted (ASR).

(averaged across all CVCs and VCVs) which is the midpoint
between the guessing probability and 100%. L corresponds
to the given SNR and g is the guessing probability averaged
across all CVCs and VCVs (g=8.9%). The fit is performed
by maximizing the likelihood assuming that the recognition
of each logatom is a Bernoulli trial (cf. Brand and Kollmeier,
2002). Note that this fitting function assumes that 100% rec-
ognition rate is reached at high SNRs. This is feasible for
listeners with normal hearing and for speech recognition
modeling using an optimal detector, but is not necessarily the
case for a real ASR system as such an ASR system will still
show high error rates on speech material with a low redun-
dancy even when the SNR is very high (Lippmann, 1997).
For model configuration A the fitting curve is therefore fixed
at the highest recognition rate that occurred in the ASR test.

lll. RESULTS AND DISCUSSION
A. Average recognition rates

Figure 3 panel 1 shows the mean phoneme recognition
rates in percent correct versus SNR across all phonemes.
Error bars denote the inter-individual standard deviations of
the ten normal-hearing subjects. Furthermore, the recogni-
tion rates of CVCs and VCVs are plotted separately. The
recognition rates for CVCs are higher than for VCVs except
for =20 dB SNR. The fitting of the psychometric function to

T. Jurgens and T. Brand: Microscopic prediction of speech recognition

Author's complimentary copy



TABLE I. List of fitted parameters characterizing observed and predicted
psychometric functions for the discrimination of logatoms in ICRAI noise.
Rows denote different distance measures used by the DTW speech recog-
nizer and different model configurations (see Secs. I A and II C for details)
as well as values of human listeners. Pearson’s rank correlation coefficients
(last column) were calculated using the observed data of individual human
listeners. * denotes significant (p<0.05) and ** highly significant (p
<0.01) correlations.

Difference to
SRT observed SRT  Slope Pearson’s

(dB SNR) (dB) (%/dB) r?
Human listeners -12.2 0* 5.4 1*
Euclidean, Conf. A -0.4 11.8 5.7 0.64*
Euclidean, Conf. B -8.1 4.1 10.0 0.83%
Two-sided exp., Conf. A -0.4 11.8 5.8 0.65%*
Two-sided exp., Conf. B -10.6 1.6 8.4 0.927%
Lorentzian, Conf. A -0.6 11.6 3.5 0.83:%:*
Lorentzian, Conf. B -13.2 -1.0 6.8 0.97%*

“By definition.

the data yields a slope of 54+0.6%/dB and a SRT of
—-12.2*1.1 dB. Note that even the recognition rate at
—20 dB SNR is significantly above chance and therefore in-
cluded in the fitting procedure.

The observed and the predicted results calculated with
different distance measures and model configurations are
shown in Table I. The smallest differences from the observed
SRT values are found for configuration B. Using this con-
figuration, the slope of the predicted psychometric function
is slightly overestimated. However, model configuration A,
which performs a typical task of speech recognizers, shows a
large gap of about 12 dB between predicted and observed
SRTs, which is typical of ASR (see below). This gap is
nearly independent of the type of distance measure, while the
slope is slightly underestimated. The last column of Table I
shows Pearson’s squared rank correlation coefficient 7> be-
tween the individual observed and predicted speech recogni-
tion scores. The Lorentzian distance measure using model
configuration B shows the highest * of 0.97 (p<0.01)
whereas the two-sided exponential and the Euclidean dis-
tance measure show somewhat lower correlation coefficients
and higher differences between observed and predicted
SRTs. Different distance measures do not substantially affect
the prediction of the SRT using model configuration A.

The predicted psychometric function of this best fitting
model realization (configuration B with Lorentzian distance
measure) is displayed in Fig. 3 panel 2. In addition, the fitted
psychometric function of Fig. 3 panel 1 is replotted (HSR),
and the predicted psychometric function of model configura-
tion A with Lorentzian distance measure is shown. Further-
more, ASR-data of Meyer et al. (2007a) were included for
comparison (see Sec. IV). For model configuration B the
resulting SRT wusing the Lorentzian distance measure is
—13.2 dB SNR and thus within the interval of the subjects’
inter-individual standard deviation. The ranking of the rec-
ognition of vowels and consonants (i.e., that CVCs are better
understood than VCVs) is predicted correctly except for
—20 dB SNR. Model configuration A, which performs a typi-
cal task of speech recognizers, shows a SRT of —0.6 dB and
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FIG. 4. (Color online) Recognition rates of consonants, separately, as a
function of SNR for ten normal-hearing listeners (panel 1) and for model
configuration B with Lorentzian distance measure (panel 2). As an example
the psychometric function for the discrimination of /f/ in noise is shown
(solid line).

a slope of 3.5% /dB using the Lorentzian distance measure.
With this configuration the ranking of the recognition of
vowels and consonants could not be predicted, i.e., the model
shows higher recognition rates for consonants than for vow-
els.

B. Phoneme recognition rates at different SNRs

Figure 4 shows the recognition rates of single conso-
nants embedded in logatoms as a function of SNR for
normal-hearing listeners (panel 1) and for model configura-
tion B using the Lorentzian distance measure (panel 2). Pick-
ing out one phoneme, the psychometric function for this spe-
cific phoneme can be seen. The solid lines in panels 1 and 2
show these psychometric functions for the phoneme /f/ as an
example. Normal-hearing listeners show quite poor recogni-
tion rates for the phonemes /n/, /v/, or /g/ at the SNRs chosen
for measurement. However, there are also some phonemes
like /s/, /ts/, and /[/ that show very high recognition rates at
these SNRs. The predicted recognition rates for the latter
phonemes (see panel 2) fit the observed recognition rates
quite well. This is also the case for /l/, /m/, /p/, /f/, and /t/.
For the other phonemes there is a discrepancy between ob-
served and predicted recognition rates especially at high
SNRs. For instance, at 0 dB SNR the predicted recognition
rate is almost 100% for all phonemes, but normal-hearing
listeners actually show poor recognition rates of 58% for /v/
or 70% for /g/. The recognition rates for vowels across SNR
are shown in Fig. 5. Normal-hearing listeners show quite a
steep psychometric function for the phonemes /e/, /e/, /a:/,
and /i/ but a shallower psychometric function for the other
phonemes. The predicted recognition rates for /o/ and /u/ fit
the observed recognition rates quite well across all SNRs
investigated in this study. However, for /e/, /e/, /a:/, and /i/
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FIG. 5. (Color online) Recognition rates of vowels. The display is the same
as in Fig. 4.

the predicted psychometric functions are too shallow. Note
that for vowels, contrary to consonants, at 0 dB SNR almost
100% recognition rates are reached by both normal-hearing
listeners and model configuration B.

C. Phoneme confusion matrices

Confusion matrices are calculated for all SNRs which
were used in the experiment. In Sec. IV the confusion matri-
ces at —15 dB SNR are analyzed. The recognition rates at
this SNR are the least influenced by ceiling effects (see Figs.
4 and 5) and show the largest variation across phonemes.
Therefore, at this SNR, the patterns of recognition are most
characteristic. Figure 6 panel 1 shows the observed confu-
sion matrices of the VCV discrimination task and panel 2 the
corresponding predictions using the Lorentzian distance
measure with model configuration B. Each row of the con-
fusion matrix corresponds to a specific presented phoneme,
and each column corresponds to a recognized phoneme. The
diagonal elements denote the rates of correct recognized pho-
nemes and the non-diagonal elements denote confusion rates
of phonemes. All numbers are given in percentages.

At —15 dB SNR the average recognition rates for all
consonants are 33% (human) and 36% (model configuration
B, see also Fig. 3). In the following text the comparison of
the two matrices will be described element-wise. Two ele-
ments differ significantly if the two-sided 95% confidence
intervals surrounding the respective elements do not overlap
(cf. Appendix). The observed and the predicted correct con-
sonant recognition rates do not differ significantly, except for
the phonemes /s/, /b/, and /v/. Rates below 17% do not differ
significantly from the guessing probability of 7% (cf. Appen-
dix). Hence, almost all non-diagonal elements of the model
confusion matrix do not differ significantly from the corre-
sponding elements of the human listeners’ confusion matrix.
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FIG. 6. (Color online) Confusion matrices (response rates in percent) for
consonants at —15 dB SNR for normal-hearing subjects (panel 1) and for
model configuration B with Lorentzian distance measure (panel 2). Row:
presented phoneme; column: recognized phoneme. For better clarity, the
values in the cells are highlighted using gray shadings with dark correspond-
ing to high and light corresponding to low response rates. Response rates
below 8% are not shown.

One exception is the confusion “presented /ts/-recognized
/s/,” found in the observed confusion matrix, which cannot
be found in the predicted confusion matrix. Other exceptions
like “presented /p/-recognized /m/” differ just significantly
and shall not be discussed in detail in this section. Unfortu-
nately, the size of confidence intervals of the matrix elements
decreases very slowly with an increasing amount of data.
Therefore, it is not possible to find many significant differ-
ences between predicted and observed matrix elements al-
though the amount of data is already relatively large. How-
ever, if we compare the correct recognition rates within one
matrix many phonemes can be found that differ significantly
in recognition rate. Note that within one single matrix only
matrix elements from different rows should be compared (cf.
Appendix).

Figure 7 panel 1 shows the observed confusion matrices
of the CVC discrimination task and panel B the correspond-
ing predictions using the Lorentzian distance measure with
model configuration B. At —15 dB SNR the average recog-
nition rates for all vowels are 52% (human) and 46% (model
configuration B, see also Fig. 3 panel 2). The ranking of the
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FIG. 7. Confusion matrices (response rates in percent) for vowels at —15 dB
SNR for normal-hearing subjects (panel 1) and of model configuration B
(panel 2). The display is the same as in Fig. 6.

best recognized phonemes /e/ and /i/, as well as the ranking
of the worst recognized phonemes /o/ and /u/, is predicted
correctly. However, the overall “contrast” (i.e., the difference
between best and worst recognized phonemes) of the pre-
dicted matrix is much less pronounced than in the observed
matrix. The largest number of confusions occurred between
the phonemes /u/, /5/, /o/, and /u/ for both predictions and
observations. However, the significant observed confusion
“presented /a:/-recognized /a/” cannot be found in the pre-
dicted confusion matrix. Furthermore, the phonemes /o/ and
/u/ are recognized with a bias by the model, i.e., no matter
what phoneme is presented, the model shows a slight prefer-
ence for these phonemes.

Pearson’s ¢® (Lancaster, 1958) index was used for com-
paring the similarity between measured and modeled confu-
sion matrix data. This index is based on the chi-square test of
equality for two sets of frequencies and provides a normal-
ized measure for the dissimilarity of two sets of frequencies.
A value ¢?=1 is related to complete dissimilarity whereas a
value of ¢*>=0 is related to equality. Table II shows ¢* values
for comparing the confusion patterns, i.e., each ¢ value is a
measure for the dissimilarity of the xth row of the observed
confusion matrix and the xth row of the predicted confusion
matrix of Figs. 6 and 7, respectively. For the consonant con-
fusion matrices highest similarity is found for the confusion
patterns of /t/, /s/, and /[/. This very high similarity is mainly
due to the high correct response, i.e., the diagonal element.
Generally, many observed and predicted confusion patterns
show high similarity due to low ¢?-values. However, the
observed and predicted confusion patterns of /ts/ show the
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TABLE I1. Pearson’s ¢” index, a measure of dissimilarity, for comparing the
confusion patterns, i.e., one row of a confusion matrix, of observed and
predicted phoneme recognitions from Figs. 6 and 7, respectively.

Presented consonant @? Presented vowel @?
/d/ 0.21 /a/ 0.10
i 0.12 /el 0.24
g/ 0.24 n 0.19
/k/ 0.20 /ol 0.21
It/ 0.16 /ol 0.11
/sl 0.12 la:/ 0.24
/b/ 0.15 /el 0.14
Ip/ 0.16 1i/ 0.15
v/ 0.14 o/ 0.14
Its/ 0.25 n/ 0.10
/m/ 0.21
/n/ 0.14
/f1 0.08
n 0.18

lowest similarity. This is mainly due to the significant con-
fusion of “presented /ts/-recognized /s/” which was not pre-
dicted by the model. The confusion patterns of the phonemes
/f/, I/, and /p/ show moderate similarity. These phonemes
also show a poor recognition rate at —15 dB SNR and thus
higher percentages in the non-diagonal elements. This gives
support to the supposition that the model is not able to pre-
dict the consonant confusions of normal-hearing listeners.
For comparing the patterns of recognition, i.e., the diagonal
of the confusion matrix, the correlation coefficients between
observed and predicted data are shown in Table III as a func-
tion of SNR. For a SNR of —15 dB this correlation coeffi-
cient amounts to >=0.91 (p<0.01). This strong correlation
means that the model is quite good in modeling the correct
responses. For observed and predicted consonants there are
also highly significant correlations found at —10 and —20 dB
SNRs. The correlation decreases rapidly for higher SNR
mainly due to ceiling effects, i.e., many phoneme recognition
scores are in the range of 100%. Note that at 0 dB SNR a
correlation coefficient for consonants could not be assigned
due to the fact that at this SNR all consonants are predicted
at a recognition rate of 100% whereas some were observed at
lower recognition rates.

For the vowel confusion matrices highest similarity is
found for the observed and predicted confusion patterns of
/al, /u/, and /u/. Many confusion patterns show a high simi-
larity except for those of /e/, /o/, and /a:/ which show only

TABLE III. Correlation coefficients 1> for comparing observed and pre-
dicted recognition scores from Figs. 4 and 5, i.e., the diagonals of confusion
matrices, as a function of SNR. * denotes significant (p<0.05) and **
highly significant (p <0.01) correlations.

SNR
(dB) 2 for consonants r* for vowels
0 Not assigned 0.09
-5 0.34* 0.52*
-10 0.78%+ 0.56+*
-15 0.91%* 0.57*
=20 0.86%* 0.26
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modest similarity. The high similarity for the former pho-
nemes is mainly due to the correct modeling of confusions
“presented /a/-recognized /a:/”, “presented /u/-recognized
/u/”, and “presented /u/-recognized /o/”, and the correct re-
sponses, respectively. The modest similarity for /e/, /3/, and
/a:/ is mainly due to the high discrepancy in predicting the
correct diagonal element score. Correlating the diagonals at
this SNR (cf. also Table III) shows that the patterns of rec-
ognition are significantly (r?=0.57, p<0.05) correlated but
not as high as for the consonant recognition patterns. This
also holds for —10 and —20 dB SNRs. For higher SNRs, i.e.,
higher average recognition scores, the correlation of pre-
dicted and observed vowels is higher than the correlation of
consonants. This leads to the assumption that the model can
better predict the confusion patterns for vowels than for con-
sonants at low recognition rates as, e.g., for /u/ and /u/. In
predicting the correct responses, however, the model is not as
good for the vowels as for the consonants.

The fact that the model is not able to predict confusion
patterns correctly, especially for consonants, may be due to
two reasons. The first reason may be that the model is partly
not able to exploit similarities between the IRs of phonemes
that might, in fact, be similar to one another for normal-
hearing listeners. This is supported by a confusion that is not
predicted (“presented /ts/-recognized /s/”), but not, e.g., by
the confusions between /u/ and /o/ that are almost correctly
predicted. The second reason may be simply due to the high
ranges of confidence intervals (see Appendix) due to the in-
herent binomial statistics of this speech test.

IV. GENERAL DISCUSSION
A. Microscopic prediction of speech intelligibility

This study compares the recognition performance in
noise of a microscopic speech intelligibility prediction model
to the phoneme recognition performance of human listeners.
The model was also used with the same approach as in this
study to predict speech intelligibility of a rhyme test (Holube
and Kollmeier, 1996). Our results, as well as the results of
Holube and Kollmeier (1996), show that this combination of
perception model and DTW speech recognizer is able to dis-
criminate noisy speech signals in a closed-set testing proce-
dure. The model used here is also similar to the microscopic
model used by Barker and Cooke (2007). Their model is
inspired by ASR techniques and evaluates speech parts that
“glimpse” the spectro-temporal pattern of the signal to be
recognized out of background noise. One main novelty of
this study is that the use of the speech database of Wesker et
al. (2005), which provides many recordings of the same
logatom, allows the investigation of the influence of a-priori
knowledge about the speech. This investigation is possible
because the speech recognizer is realized with two model
configurations. In model configuration B templates are used
which are identical to the test items; this corresponds to
maximum a-priori knowledge. In model configuration A the
recognizer used templates which are not identical to the test
items corresponding to less a-priori knowledge.

Assuming limited a-priori knowledge within model con-
figuration A results in a much poorer performance than ob-
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served in the results of human listeners. This reflects the gap
between human and machine speech reception (cf. Jiirgens et
al., 2007) because configuration A is the standard case for
ASR. The gap of about 11-12 dB SNR is consistent with
findings of other studies employing common speech recog-
nition systems like hidden-Markov-models (HMMs). Meyer
et al. (2007a) found a gap of about 10 dB SNR (averaged
across different speakers) between human listeners’ SRT and
the SRT of a speech recognizer using mel-frequency-
cepstral-coefficients and a HMM using the same OLLO
speech corpus and very similar listening experiments. As a
direct comparison, a subset of the ASR-data of Meyer et al.
(2007a) is plotted as an additional psychometric function in
Fig. 3. The subset of speech material to be tested is limited to
the same speech material that was used in the present study.
For this speech material the gap in SRT between ASR and
normal-hearing listeners’ performance extends to about
8 dB. The difference of 3—4 dB from our results might be
due to different speech recognizers used. Meyer et al
(2007a) used a speech recognizer that benefited from decades
of research. Also the amount of training material in their
study was much larger (49 speakers with different articula-
tion styles) than in the present study.

Speech intelligibility can be predicted with greater accu-
racy using model configuration B in which the amount of
information about the speech signal prior to the recognizing
process is assumed to be perfect. It has to be stated that in
this point the model differs from human listeners’ speech
processing because human listeners have not stored the exact
IR of the signal to be recognized. Human listeners are able to
generalize their IR of a speech utterance to different speech
waveforms, even if different articulation styles or speakers
are involved. However, our speech recognition model in-
cludes a pattern recognizer that has to find a speech pattern
among different alternatives, which is closer to human
speech processing than, for example, the SII (ANSI, 1997).
This optimal detector concept is a standard in psychoacoustic
modeling and predicts, e.g., forward, backward, and simulta-
neous masking thresholds (Dau et al., 1996b), modulation
detection thresholds (Dau and Kohlrausch, 1997), and the
time resolution of the binaural system (Breebaart er al.,
2002). As this speech recognition study is in line with other
psychoacoustic experiment studies because of the closed-test
paradigm and the nonsense speech material used here, such
an approach seems to be appropriate. The very accurate
agreement of observed and predicted phoneme recognition
rates using model configuration B does not mean that human
listeners have a perfect decision device. Humans’ limitations
in discriminating speech in noise are certainly due to ener-
getic masking of the speech signal by background noises and
also due to errors in the inherent processing in the subse-
quent word recognition stage. However, the speech discrimi-
nation performance of the model is very similar to that of
human listeners if all limitations of performance are assumed
entirely in the preprocessing stage of the model. For the ex-
periments presented here this may be interpreted as that life-
long training of humans in speech makes the pattern recog-
nizing part of HSR perform as well as the model’s optimal
detector.
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With configuration B the model is capable of predicting
the SRT of this speech test with an accuracy of about 1 dB.
The SII (ANSI, 1997) predicts the SRT within the same ac-
curacy range: For —15 dB SNR the SII-value is found to be
0.045, for instance, and for —10 dB the SII is 0.18. Trans-
formed to intelligibility scores by using the SII transfer func-
tion for Hagerman’s sentences in noise (Magnusson, 1996),
the resulting SRT is —11.2 dB SNR. The main advantage of
the microscopic modeling approach compared to the SII is
that, whereas the SII is able to predict only average recogni-
tion scores, this approach is able to predict the recognition
scores for each phoneme separately. Furthermore, this ap-
proach draws out some characteristic phoneme confusions
that are commonly seen.

B. Distance measures

The type of distance measure crucially influences the
performance of the speech recognizer when using model
configuration B. The Euclidean distance used by, e.g., Plomp
(1976), Holube and Kollmeier (1996), and Jiirgens et al.
(2007) shows the poorest performance among the distance
measures investigated here. In this study, there is a gap of
more than 4 dB between the SRT of model configuration B
and human listeners’ SRT. Using the Euclidean distance, out-
lying passages are strongly weighted and consequently the
DTW algorithm tries to minimize the occurrence of outlying
passages as far as possible. This may cause the warp path,
i.e., the temporal matching function between two IRs, to be
fitted more to the passages containing different speech or
noise. Passages with low distances are disregarded. By ap-
plying a distance measure that is less sensitive to outliers in
the matching procedure of two IRs (i.e., using the two-sided
exponential measure or the Lorentzian measure) this gap is
substantially decreased or vanishes. Using the two-sided ex-
ponential distance measure, all distances are weighted with
their usual occurrence probability (cf. Fig. 2). Therefore, this
can be called a “natural” distance measure for speech in
noise. Although no substantial influence of the type of dis-
tance measure was found on the performance of model con-
figuration A, it was found for model configuration B. One
could argue, since configuration A is typical of an ASR sys-
tem, that other ASR systems may not benefit from an opti-
mization of the distance measure they use. However, as this
approach uses a speech recognizer that does not require a
large amount of training material as common ASR systems
do, this is speculative. Nevertheless, for further optimizing of
ASR systems it may be useful to study the influence of dif-
ferent distance measures on the ASR systems’ performance.

Using the Lorentzian distance measure, all outlying pas-
sages get approximately the same constant weight because of
the flatness of the logarithm for large input values. Therefore,
the overall distance between two IRs is mainly dominated by
the smallest elements of the distance matrix. In other words,
the steepness of the logarithm at low values causes similar
passages of the IRs to be matched as closely as possible. This
may particularly be an advantage for discriminating noisy
speech samples because the speech recognizer is dominated
by matched (i.e., similar speech) patterns and neglects un-
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matched (i.e., noise or different speech) patterns. Hence, the
detector can separate the objects “matched speech” passages
from “unmatched speech” or “noise only” passages more ap-
propriately. If we conceive of noise and speech as different
acoustical objects this mechanism may have some similari-
ties to the mechanism of acoustical object separation within
the human auditory system. Neglecting passages that do not
match passages of stored response alternatives is a candidate
for modeling human’s mechanism of object separation. In
that way the distinction between a “matchable speech object”
and a “not matchable speech object” or “noise-only object”
may be enhanced. Using model configuration B, the Lorent-
zian distance measure performs best and results in a high
agreement in phoneme recognition. Therefore, this set-up
was chosen for the prediction of speech recognition in noise
of listeners with normal hearing.

C. Phoneme recognition rates and confusions

In this study both human listeners and the model show
the highest performance at the same consonants /t/, /s/, /]/,
and /ts/ as in the study of Phatak and Allen (2007) who
investigated consonant recognition rates in speech weighted
noise. The results obtained in this study are in line with those
of Phatak and Allen (2007), although they used speakers and
listeners of a different native language and different speech
material. Furthermore, the amount of alternatives that could
be recognized was completely different from our measure-
ments. However, the separation of consonants into a low
scoring and a midscoring group with the same phonemes as
in Phatak and Allen (2007) could not be observed in this
study. They concluded that differences in recognition rates
can mainly be explained by differences in the long-term
spectra of speech and noise. However, this may not account
for consonants with characteristics that are mainly deter-
mined by the temporal structure as, e.g., for plosives like /p/,
/t/, or /k/. Our approach regards this temporal structure by
the temporal matching performed in the DTW speech recog-
nizer.

By and large, the confusion matrices of human listeners
and of model configuration B with Lorentzian distance mea-
sure are very similar. Except for a small number of elements,
the consonant confusion matrices do not differ significantly
element-wise regarding the binomial statistics valid for these
discrimination tasks (see Appendix). The correlation between
predicted and observed recognition rates of single phonemes
is very high. This is promising and it may indicate that for all
phonemes speech information is conserved or emphasized
during the modeled “effective” auditory preprocessing in a
way similar to human listeners.

The vowel confusion matrix of the model shows a slight
preference, i.e., a bias, concerning the vowels /u/, /2/, /o/, and
/u/ independent of the presented vowel. This is one main
difference between the predicted and observed vowel confu-
sion matrices. Meyer et al. (2007a) found that the phonemes
/o/ and /u/ within this speech corpus have the least distinctive
average spectrum compared to speech-shaped noise. Conse-
quently these phonemes are the phonemes best masked in the
background noise at low SNRs. If the speech recognizer is
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not able to match a presented phoneme, it is very probable
that it matches the IR that is the most similar to the IR of the
background noise. These are the IR of logatoms with /o/ and
/u/ as middle phonemes. In some cases the procedure prob-
ably matches mainly the background noise characteristics of
the IR and is not able to focus on the speech characteristics
anymore. One reason why the prediction of vowel recogni-
tion rates is poorer than for consonants while the prediction
of vowel confusions is better than for the consonants may be
the spectro-temporal structure of these two phoneme groups.
Generally, vowels are more stationary signals than conso-
nants. Furthermore, there is no clear separation between dif-
ferent vowels but a continuous transition in the frequency
range. Therefore, it seems reasonable to assume that two
different vowels are “perceptually” closer to one another
than are two different consonants. This may explain why
confusions occur more frequently in both normal-hearing lis-
teners’ and modeled data.

D. Variability in the data

Data obtained by speech tests using human listeners al-
ways show both intra-individual and inter-individual vari-
abilities. One factor for the inter-individual variability is the
variability of the hearing threshold across listeners. Prelimi-
nary simulations, however, showed that adapting only the
hearing threshold simulating noise results in less variability
than found in normal-hearing listeners’ speech recognition
data. This can be explained by the low rms level of the
hearing threshold simulating noise which is masked by the
much higher level of the background noise. For this reason a
much more effective way to include variability was to use
running background noise. In other words the variability in
the simulations originates almost exclusively from the statis-
tics of the background noise. However, this is somewhat un-
realistic because in the measurements the background noise
stimuli were identical for every participant whereas, in real-
ity the auditory processing varied. It still remains an open
question how to obtain a comparable variability by modify-
ing the auditory processing without using this workaround.
For speech intelligibility modeling in silence, e.g., Holube
and Kollmeier (1996) achieved some variability using a fluc-
tuating absolute threshold of hearing which improved their
predictions in silence. Due to the small influence of the exact
form of the absolute hearing threshold in our study, this pro-
cedure was not applied here.

E. Practical relevance

There are at least two different applications that may
benefit from this modeling approach. First, this approach
may be used to model sensorineural hearing loss by appro-
priate manipulation of the auditory preprocessing. Hence,
consequences of the auditory preprocessing on speech recog-
nition for listeners with impaired hearing can be investigated.
As a long-term aim the model may serve as a tool for distin-
guishing between reduced speech recognition caused by im-
paired preprocessing or by further problems in the patient’s
central processing. A further long-term aim is to find pro-
cessing strategies that substantially enhance the recognition
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performance of certain phonemes and that can be used in
hearing-aids. Second, automatic speech recognizers may be
improved especially for functioning in noise, if they focus on
passages fitting well to their vocabulary and if they neglect
outlying passages in a manner similar to that used in the
weighting of the perceptual distance in this study.

V. CONCLUSIONS

(1) The microscopic approach for predicting speech in-
telligibility by using an auditory model as a pre-processor to
a DTW speech recognizer is capable of discriminating CVC
and VCV logatoms in noise.

(2) If the detector stage is assumed to be optimal by
using identical templates for test signal and vocabulary, the
speech discrimination performance of the model is very
similar to that of human listeners. This means that the rec-
ognition of logatoms by humans can be modeled effectively
by assuming a limited auditory-like preprocessing stage and
a perfect speech matching process. In other words, the pre-
diction of normal-hearing listeners’ speech recognition is
only possible if exactly the same stimulus is available as
a-priori knowledge.

(3) No substantial improvement in performance of the
model with imperfect knowledge about the speech signal was
found when changing the distance measure.

(4) For the model with perfect knowledge about the
speech signal, the Lorentzian measure is the best distance
measure where outlying passages have the smallest weight
compared to the other distance measures such as the Euclid-
ean or the two-sided-exponential.

(5) Predicted recognition rates of each single phoneme
are very similar to observed recognition rates but some of the
observed characteristic patterns of human confusions did not
occur within the predictions.
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APPENDIX: SIGNIFICANCE OF CONFUSION MATRIX
ELEMENTS

For deciding whether or not two matrix elements differ
significantly, a statistical analysis has to be made. One ele-
ment of a confusion matrix is given by p=x/n, with x denot-
ing the number of recognitions of the phoneme specified by
the column and n denoting the number of presentations
specified by the row of the matrix. There are n=50 (VCV)
and n=80 (CVC) presentations, respectively, of each pho-
neme at each SNR (i.e., each confusion matrix). Each single
presentation is followed by a subjects’ decision for one re-
sponse alternative given in the list. Therefore, each decision
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is a Bernoulli-trial with an unknown underlying probability
7 for the correct item and (1—47) for all other items. Note
that p is just an estimate of 7. By estimating 7 using p,
both-sided 95%-confidence intervals can be calculated based
on binomial statistics (Sachs, 1999). The upper boundary is
given by

(x+1)Fupper (A])

T,
! n=x+(x+ 1D)Fppe

pper —

with F\pper=Fo(x4+1)2(n—x)) taken from Fisher’s F-distribution.
The lower boundary is given by

X

(A2)

Tower = (n=x+1)Fiyyer
with Flower:F{Z(n—xH),Zx}'

The range of confidence intervals for an observed per-
centage p in the speech test, i.e. (Typper—Tower)» Tesults in
4% to 22% for n=80 (CVC presentation) and 6% to 29% for
n=50 (VCV presentation) whereas the wider range can be
found at p=50% and the smaller range at p=0% and p
=100%. These confidence intervals contain the underlying
probability 7 with a confidence of 95%. Furthermore, they
offer a criterion to decide if two percentages that are statis-
tically independent of each other differ significantly (i.e.,
their confidence intervals must not overlap). The precondi-
tion, statistical independence within one confusion matrix, is
warranted only for two matrix elements that are not part of
the same row because in this case completely different pho-
nemes were presented to obtain the two percentages. Two
elements of the same row are not independent of each other
because the recognition of one phoneme affects the percent-
ages for the other phonemes of that row. A comparison of
two elements being part of the same row requires a different
statistical analysis that is not discussed here. Therefore, only
elements of different rows (or different confusion matrices)
can be tested for difference using the methods described in
this section. When comparing two different confusion matri-
ces (e.g., observed with predicted) this problem does not
occur.
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approach was extrapolated for other audiometric frequencies.
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