Enhancement of Noisy Speech

State-of-the-Art and Perspectives

Rainer Martin

Institute of Communications Technology (IFN) Technical University of Braunschweig

July, 2003

Applications of Noise Reduction

- Hands-free telephony.
- Robust speech recognition.
- Robust speech coding (ETSI/3GPP AMR, MELPe, ITU-T 4 kbit/s codecs).
- Hearing aids and cochlear implants.
- Restoration of historic recordings.
- Forensic applications.

Ingredients

- Models of speech production
- Signal theory
- Room acoustics
- Psychoacoustics
- Models of speech perception

Objective: Improve quality and intelligibility!

Combine signal theoretic and perceptive approaches!

Noise Reduction in the Spectral Domain

Spectral analysis – noise reduction – synthesis:

Advantages of spectral processing:

- good separation of speech and noise
- decorrelation of spectral components
- integration of psychoacoustic models

Principles of Noise Reduction

 $\lambda
ightarrow$ frame index k
ightarrow frequency bin index

Principles of Noise Reduction

Estimation of Speech Coefficients

Linear estimators

- e.g. Wiener Filter
- Non-linear estimators
 - MMSE Short Time Spectral Amplitude estimator

[Ephraim & Malah, 1984, 1985]

- Psychoacoustic methods [Gustafsson et al. 1998]
- MMSE estimation based on supergaussian priors [Martin 2002]

MMSE Estimation

Optimal estimate for independent real and imaginary parts:

$$E\{S \mid Y\} = E\{S_R \mid Y_R\} + jE\{S_I \mid Y_I\}$$

$$E\{S_{\diamondsuit} \mid Y_{\diamondsuit}\} = \int_{-\infty}^{\infty} S_{\diamondsuit} p(S_{\diamondsuit} \mid Y_{\diamondsuit}) dS_{\diamondsuit}$$

Application of Bayes theorem:

$$E\{S_{\diamondsuit} \mid Y_{\diamondsuit}\} = \frac{1}{p(Y_{\diamondsuit})} \int_{-\infty}^{\infty} S_{\diamondsuit} p(Y_{\diamondsuit} \mid S_{\diamondsuit}) p(S_{\diamondsuit}) dS_{\diamondsuit}$$

- What is the appropriate prior density $p(S_{\diamondsuit})$?

Some Answers and Some Questions

- DFT coefficients are asymptotically complex Gaussian distributed ! [Brillinger, 1981]
- Typical frame size in mobile communications: 10-30 ms < span of correlation of (voiced) speech !</p>
- Do the asymptotic assumptions hold for speech signals ???
- No! See, e.g., [Porter and Boll, 1984].

Prior Densities for Real and Imaginary Part

Gaussian pdf:

$$p(S_{\diamondsuit}) = \frac{1}{\sqrt{\pi}\sigma_s} \exp\left(-\frac{S_{\diamondsuit}^2}{\sigma_s^2}\right)$$

 \rightarrow Wiener filter

Laplacian pdf:

$$p(S_{\diamondsuit}) = \frac{1}{\sigma_s} \exp\left(-\frac{2|S_{\diamondsuit}|}{\sigma_s}\right)$$

Gamma pdf:

$$p(S_{\diamondsuit}) = \frac{\sqrt[4]{3}}{2\sqrt{\pi\sigma_s}\sqrt[4]{2}} |S_{\diamondsuit}|^{-\frac{1}{2}} \exp\left(-\frac{\sqrt{3}|S_{\diamondsuit}|}{\sqrt{2}\sigma_s}\right)$$

Histogram of DFT Coefficients for Speech

Histogram of Speech Coefficients (enlarged)

Histogram of DFT Coefficients for Car Noise

Histogram of Car Coefficients (enlarged)

Non-linear MMSE Estimator

Laplacian Noise and Gamma Speech Prior

Segmental SNR Improvement (White Noise)

Relative Improvement w.r.t. Wiener Filter

Background Noise PSD Estimation

Methods:

- Voice activity detection;
- Soft-decision methods;
- Biased compensated tracking of spectral minima

[Martin 1994, 2001]

Assumptions:

- Speech and noise are statistically independent;
- Speech is not always present;
- Noise is more stationary than speech.

Minimum Statistics: Basic Principle

Minimum Statistics: Bias

PSfrag replacements

Mean of Minimum

	PSfraç	g replacements	
Mi	nimum Statistics: What's Ne	W ? B_{min}^{-1}	
		Q = 2	
	Minimum Statistic, version 1994	Q = 4	
		Q = 8	
	• fixed smoothing parameter α	Q = 16	
		Q = 32	
	 fixed bias compensation 	Q = 64	
	Minimum Statistic, version 2001	Q = 128	
		Q = 256	
		Q = 512	
	 signal dependent optimal smoo 	othing $Q = 2$	
	• signal dependent bies someon	Q=4	
	 signal dependent blas compen 	Sation $Q = 8$	
	 fast minimum update 	Q = 16	
		Q = 32	
		Q = 64	
		Q = 128	
		Q = 256	
	R. Martin	22 $Q = 512$	

PSfrag replacements

 B_{min}^{-1}

Speech pause:

Q = 4

Algorithms	white noise	vehicular noise Q = 16	street noise	
MinStat 1994 ($lpha=0.6$)	0.059 (0.11)	0.062 (0 43) 32	-0.15 (0.21)	
MinStat 2001	-0.006 (0.041)	-0.016 (0.841) ⁶⁴	-0.27 (0.13)	
(in parentheses: variance of estimation err $Q = 128$				

Speech activity (3 min without speech pauses):

Algorithms	white noise	vehicular noise $Q = Q$	street noise
MinStat 1994 ($lpha=0.6$)	0.64 (0.77)	0.77 (1.04) =	1 ₆ 0.59 (1.9)
MinStat 2001	-0.04 (0.14)	0.02 (0.173) =	⁸² -0.20 (0.28)
		Q = 0	64
		Q = 1 Q = 2	20 56
R. Martin	ty of Braunschweig	24 $Q=5$	12 f

PSfrag replacements Q = 2^QDesign of Fixed Beamformers with MATLAB

Q = 512

32

Q = Z

Directivity Pattern

PSfrag replacements

PSfrag replacements

Conclusions

Find better ways to exploit statistics of $\overline{\overline{s}}_{Q=4}^{2}$

- Incorporate models of speech productionQ = 16
 - Q = 32

Q = 8

- Develop better background noise estimation methods
 - Q = 128
- Design algorithms for high quality and intelligibility

• Exploit spatial selectivity using multiple microphones

Q = 4

Understand processing in the auditory system:

Q = 16

Q = 512

38

- Enhance perceptionally important features = $\frac{32}{Q = 64}$
- Use perceptive models to reduce complexity $\frac{128}{Q}$ algorithms Q = 256

	PSfrag replacements	
Selected References	B_{min}^{-1}	
	Q=2	
	Q = 4	
	Q = 8	
	Q = 16	
	Q = 32	
	Q = 64	
	Q = 128	
	Q = 256	
	Q = 512	
	Q=2	
	Q = 4	
	Q = 8	
	Q = 16	
	Q = 32	
	Q = 64	
	Q = 128	
	Q = 256	
R. Martin	chweig 39 $Q=512$	N