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Abstract

Physiologically motivated feature extraction methods
based on 2D-Gabor filters have already been used suc-
cessfully in robust automatic speech recognition (ASR)
systems. Recently it was shown that a Mel Frequency
Cepstral Coefficients (MFCC) baseline can be improved
with physiologically motivated features extracted by a
2D-Gabor filter bank (GBFB). Besides physiologically
inspired approaches to improve ASR systems technical
ones, such as mean and variance normalization (MVN)
or histogram equalization (HEQ), exist which aim to re-
duce undesired information from the speech representa-
tion by normalization. In this study we combine the phys-
iologically inspired GBFB features with MVN and HEQ
in comparison to MFCC features. Additionaly, MVN
is applied at different stages of MFCC feature extrac-
tion in order to evaluate its effect to spectral, temporal or
spectro-temporal patterns. We find that MVN/HEQ dra-
matically improve the robustness of MFCC and GBFB
features on the Aurora 2 ASR task. While normalized
MFCCs perform best with clean condition training, nor-
malized GBFBs improve the ETSI MFCCs features with
multi-condition training by 48%, outperforming the ETSI
advanced front-end (AFE). The MVN, which may be in-
terpreted as a normalization of modulation depth works
best when applied to spectro-temporal patterns. HEQ was
not found to perform better than MVN.

Index Terms: robust ASR, physiological Gabor filter
bank features, modulation depth, normalization

1. Introduction

After decades of research in the area of automatic speech
recognition (ASR) still no system exists that would equal
humans ability to recognize speech. Especially in acous-
tically adverse conditions (background noise, spectral
coloring, reverberation) there is a big gap in performance
of about 15dB between humans and machines. Tack-
ling the long-term goal to improve the robustness of ASR
systems to the level of humans, several approaches ex-
ist. One approach is to mimic the signal processing
of the human auditory system or rather, to integrate its
principles in terms of effective models into ASR sys-
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Figure 1: Logarithmically scaled Mel-spectrogram of
speech. Light areas denote high energy. The represen-
tation of speech through a log Mel-spectrogram is an el-
ement of many feature extraction algorithms for robust
ASR systems.

tems. This proved to work for the well known part of
the auditory system as today many robust ASR systems
employ features based on a logarithmically scaled Mel-
spectrogram like the one depicted in Fig. 1. This repre-
sentation of speech roughly reflects the frequency selec-
tivity and the compressive loudness perception of the hu-
man ear. Beyond the log Mel-Spectrogram there were
several successful attempts to integrate single auditory
principles, like the extraction of physiologically moti-
vated [1] spectro-temporal patterns, into an ASR system
to improve its robustness [2]. The early spectro-temporal
features used additional processing with neural nets to
improve a MFCC baseline. Recently, a filter bank of
spectro-temporal filters which extracts features that can
be used directly with GMM/HMM recognizers and im-
proved a MFCC baseline was presented [3]. But gener-
ally, the use of the most detailed models of the auditory
system does not result in the most robust ASR systems.
One reason for this might be that the use of GMM/HMM
based back-ends entrains certain restrictions on the fea-
ture characteristics. A different approach is therefore the
use of statistical methods to better match the require-
ments of state-of-the-art GMM/HMM based back-ends.
Normalization techniques like MVN [4] or HEQ [5] have
shown to improve the robustness of systems based on tra-
ditional MFCC features. In this study both approaches
are combined and normalization methods are applied to
the physiologically motivated spectro-temporal Gabor fil-
ter bank (GBFB) features in comparison to traditional
MFCC features. Further, the effect of MVN/HEQ is in-
terpreted as a normalization of modulation depth and its
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Figure 2: Left panel: Effective spectro-temporal pat-
terns of combined traditional spectral DCT and temporal
A&AA processing. Right panel: The 41 2D-Gabor fil-
ters that are used for feature extraction with the Gabor
filter bank. The patterns are scaled and their real spec-
tral extension is the same as of the MFCC-DD patterns
in the left panel.

effect on temporal, spectral, and spectro-temporal pat-
terns is investigated.

2. Methods
2.1. Gabor filter bank features

The Gabor filter bank (GBFB) )features are based on a
log Mel-spectrogram with 23 Mel-bands between 64 Hz
and 4kHz, 10ms window shift, and 25ms window
length. An examplary log Mel-spectrogram is depicted
in Fig.1. While for the extraction of MFCCs with
A&AA this spectro-temporal representation is processed
spectrally with a DCT and temporally with slope-filters,
GBFB features are extracted with 2D-Gabor filters that
perform a simultaneous spectral and temporal process-
ing. Fig.2 depicts the relation of the spectro-temporal
2D-Gabor filters and the effective MFCC-DD spectro-
temporal patterns. The outer product of a DCT base func-
tion and a Delta base function gives the effective spectro-
temporal pattern that the corresponding MFCC-DD di-
mension encodes. The GBFB feature extraction is illus-
trated in Fig. 3. First, spectro-temporal patterns are ex-
tracted by 2D-convolving the 2D-Gabor filter functions
with the log Mel-spectrogram. A subsequent selection of
representative channels by critically sampling the filtered
log Mel-spectrograms limits the systematical correlation
of the feature dimensions. Each 2D-Gabor filter extracts
patterns of a pair of a spectral and a temporal modulation
frequency. These features were shown to improve the ro-
bustness of a MFCC baseline system when fed directly
into an GMM/HMM recognizer [3]. The range of modu-
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Figure 4: Illustration of mean and variance normaliza-
tion and histogram equalization of the first MFCC values
for a speech signal in different acoustic contexts.

lation frequencies covered is about 6 to 25 Hz and 0.03 to
0.25 Mceylizd. Some properties of the GBFB features are
compared with those of MFCC features in Tab. 1. The
MFCC-DD processing can be described by separate spec-
tral and temporal operations, while the GBFB processing

cannot.

Table 1: Properties of MFCCs and GBFBs compared

Feature ‘ spectral temporal separable dim.
MFCC-DD | DCT A&AA yes 39
GBFB Gabor Gabor no 311

2.2. Normalization of feature value statistics

It has been shown that the robustness of an ASR system
with MFCC features can be increased by removing the
mean value and normalizing the variance of each feature
dimension [4]. This processing is called mean and vari-
ance normalization (MVN) and normalizes the first and
the second moments of the feature value distributions.
An extension to MVN is mapping the feature values to
a specific reference distribution [5]. This processing is
called histogram equalization (HEQ) and normalizes all
moments of the feature value distributions. The effect of
MVN and HEQ on the first (not zeroth) MFCC is illus-
trated in Fig. 4. A spectral coloring (eg. preemphasis) of
a speech signal leads to a systematic changes in the log
Mel-spectrogram and consequently to a change of the de-
rived features (cf. offset/mean value in Fig.4 colored).
Likewise, additive noise or reverberation result in a re-
duction of the dynamic range by filling up the “valleys”
of the log Mel-spectrogram, which may be interpreted
as a reduction of modulation depth (cf. scale/variance
in Fig. 4 noisy). Applying MVN/HEQ to MFCC/GBFB
features counteracts the influence of the most common
sources of variability in noisy speech by normalizing the
modulation depth, because the feature values scale lin-
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Figure 3: [llustration of the Gabor filter bank feature extraction. n: temporal index; k: spectral index; w: modulation
frequencies. The input log Mel-spectrogram is filtered with each of the 41 filters of the Gabor filter bank. Representative
channels of the filter outputs are selected and concatenated. The 311-dimensional output is used as feature vector.

early with it. The recognition performance of GBFB and
MEFCC features is evaluated with and without MVN and
HEQ.

2.3. Recognition experiment and baseline

The effect of the different front-ends on the robustness of
an ASR system is evaluated within the Aurora 2 frame-
work [6]. The task is the recognition of English con-
nected digits which are contaminated with eight differ-
ent everyday background noises from 20 dB to -5 dB. The
framework provides speech data for training and testing
as well as a GMM/HMM classifier and trainings rules. A
reference setup defines whole-word left-to-right HMMs
with 16 states, 3 mixtures per state, and without skips
over states. The back-end is not modified and used with
the same parameters as in the reference. Two different
training conditions exist. For clean training only utter-
ances without added noise are used, while for multi train-
ing utterances with and without added noise are used.
Although only four noise types that occur in the testing
data are also included in multi training data, it allows the
recognizer to learn the reliability of feature patterns in
noise. As reference features the first 13 MFCCs with first
and second order discrete temporal derivative (A&AA)
are used, resulting in 39-dimensional MFCC-DD fea-
tures. Additionally the baseline results for ETSI MFCC
[7] and ETSI Advanced Front-End (AFE) [8] features are
reported. The word recognition accuracies are compared
at signal-to-noise ratios (SNR) from 20 to -5 dB.

2.4. Spectral and temporal contribution

With the aim of evaluating the effect of normalizing only
spectral, only temporal, or spectro-temporal patterns, the
separability of spectral and the temporal processing with
MFCC-DD features is exploited The normalization (N) is
applied at the following stages of MFCC-DD feature cal-
culation: MFCC-N-DD, MFCC-DD-N, DD-N-MFCC.
With MFCC-N-DD features, spectral patterns are inte-
grated by the DCT before normalization. With DD-N-
MEFCC features, short term temporal patterns are inte-
grated by the A&AA processing before normalization.
And with MFCC-DD-N features, spectral and short term

clean ti
ETSI AFE Y ETSI AFE

50.0
ETSI MFCC _' ETSI MFCC
0.0 0
inf 20 15 10 5 0 -5 inf 20 15 10 5 0 -5
SNR [dB] SNR [dB]
[ —GBFB-N - MFCC-DD-N  ----GBFB - - MFCC-DD |

Figure 5: Word recognition accuracies for GBFB and
MFCC-DD feature with and without mean and variance
normalization (N) at different test signal to noise ratios
and training styles.

temporal patterns are integrated before normalization.
The recognition performance of the differently normal-
ized features is evaluated.

3. Results
3.1. Normalized GBFB features

Average word recognition accuracies (WRA) for GBFB
and MFCC features with and without MVN are reported
in Fig.5. With clean condition training MVN dramati-
cally improves the robustness of MFCCs by 5-7 dB over
a wide range of WRAs (50% to 95%). The improvements
for GBFBs with 2-3dB are smaller, but they perform
about 3 dB better without MVN. Thus, MFCCs perform
about 1 dB better than GBFBs at low SNRs, but cannot
improve the highly optimized ETSI AFE baseline. How-
ever, GBFB features outperform all features when testing
on clean data. In terms of average relative improvement
over SNRs from 20dB to 0 dB, MFCCs with MVN im-
prove the WRA of the ETSI MFCC baseline by 58% on,
while GBFBs with MVN improve the baseline by 54%.
With multi condition training MVN improves the perfor-
mance of MFCCs almost independently of the SNR by
about 2-3dB. For GBFB features the improvements are
with 2.5dB at low SNRs and up to 6dB at high SNRs
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Figure 6: Word recognition accuracies for MFCC-
DD features with and without mean and variance nor-
malization of spectral (MFCC-N-DD), temporal(DD-N-
MFCC), and spectro-temporal (MFCC-DD-N) patterns
at different signal to noise ratios for clean and multi style
training.

more pronounced. In terms of average relative improve-
ment over SNRs from 20 dB to 0 dB, MFCCs with MVN
improve the WRA of the ETSI MFCC baseline by 37%,
while GBFBs with MVN improve the baseline by 48%.
GBFB features outperform all other features, including
ETSI AFE, in every noisy testing condition. The the im-
provements with HEQ were found to be similar to the im-
provements with MVN within a range of £1 dB and are
therefore omitted. The very high recognition scores for
clean testing data with clean condition training, as well
as for high SNRs with multi condition training (which
contains speech data at {0, 20,15,10,5} dB SNR) in-
dicate a certain sensitivity of GBFB features to mis-
matched SNR conditions. Possibly, the 311-dimensional
GBFB features encode more precise information about
the speech signal than the 39-dimensional MFCC fea-
tures which results in a higher sensitivity to the SNR. This
finding puts the one-model-for-all-SNRs approach into
question, as speech at 0 dB SNR and speech at 20 dB SNR
have quite different characteristics. If the hypothesis
holds, than GBFB features with MVN should perform
even better in context-dependent models, which should
be evaluated in future experiments.

3.2. Spectral vs. temporal normalization

Average word recognition accuracies (WRA) for MFCC
features with and without MVN of spectral, tempo-
ral, and spectro-temporal patterns are depicted in Fig. 6.
Normalizing the output after the temporal processing and
before the spectral processing results in worse perfor-
mance than without normalization, with an exception at
very low SNRs with multi condition training. The MVN
effectively normalizes all Mel-bands to have the same
energy and the same modulation depth which seems to
accompanied by a loss of information that is relevant

for robust ASR. Normalizing the output after the spec-
tral processing and before the temporal processing results
in important improvements, but the best performance is
achieved by normalizing after the spectral and temporal
processing. This indicates that spectro-temporal patterns
are best extracted from an unprocessed spectro-temporal
representation and normalization is best performed after
spectral and temporal integration.

4. Conclusions

The most important findings of this work can be summa-
rized as follows:

e Normalization increases the robustness of physio-
logically motivated spectro-temporal Gabor filter
bank features by 2.5-5dB SNR on a digit recogni-
tion task, outperforming ETSI AFE features with
multi-style training.

e Normalization of separable spectro-temporal pat-
terns was found to be best applied after spectral and
temporal integration.

e Normalized Gabor filter bank features seem work
well in matched signal to noise ratio conditions,
which should be further investigated with SNR-
dependend models.
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