

High Level Tools for Low-Power ASIC design

Arne Schulz OFFIS Research Institute, Germany

Overview

- introduction
- high level power estimation
 - µProcessors
 - ASICs
- tool overview
 - µProcessors
 - ASICs
- conclusion
- future work

Moores Law

beating Moores Law

"Trade-off"

OFFIS

traditional design flow

design backend

Why High-Level?

specification level impact analysis.

first time right architecture.

up to 75% power reduction in minutes.

- avoids design iteration down to RT or gates.
- saves up to months of design time.

high-level design flow

High-level EDA-tools for power-optimal ASIC design

Embedded Approach

trend to software development:

- faster than hardware development
- cheaper than hardware development
- easier than hardware development
- updates/fixes are possible (e.g. firmware-updates)
- "off the shelf" CPUs
- ⇒ high-level power estimation for µ-Processors

⇒ high-level power estimation for ASIC

Example SW Estimation Tool

AccuPower overview:

- high level microprocessor power estimation tool
- contains
 - micro architectural simulators
 - library of VLSI layouts
 - power estimator
- based on SimpleScalar (MIPS-based ISA-simulator)
- vendor: academic

() F F

Algorithmic Level Estimation

OFFIS

two different approaches:

- quick synthesis to RTL net list
 - complex and slow
 - inaccurate if synthesis result does not get close to final architecture
 - internal information about applied synthesis tool necessary
- complexity analysis of control data flow graph (CDFG) representation
 - only transformation of algorithm into CDFG needed (compilation)
 - fast but less accurate
 - example: register power is computed by counting number of CDFG edges between operations

Example: Quick Synthesis Approach

OFFIS

HyPE: Overview

- Hybrid Power Estimation
- uses behavioural simulation and macro models for data path components
- three phases of estimation:
 - high level simulation
 - calculation of data path modes
 - statistical power estimation
- very high performance
- vendor: academic

Less Time to Low Power

OFFIS

ORINOCO Principle

Example Estimation Result

OFFIS

Conclusion

- high-level power estimation: biggest gain is possible
- academic approaches for high-level power optimisation leading edge of current research
- embedded software power estimation still research topic
- ASIC power estimation on lower levels: commercial tools available (eg. Synopsys, Sequence, Cadence)
- for higher levels first available tool: ORINOCO from ChipVision

Future Work

OFFIS research at OFFIS (SAO-group)

- new metrics (interconnect, area, timing)
- improved models (IP, leakage)
- software power estimation (µ-Processors, partitioning)

commercial exploitation at ChipVision Design Systems

