VAK 5.04.900

Physik für Studierende der Biologie, Lehramt Chemie und Landschaftsökologie

Mo 14-16 Uhr

Jesko L. Verhey (Sprechstunde Di 14-15 Uhr)

Zusätzlich: begleitendes Praktikum

Begleitende Literatur

- > 20Euro
- Stroppe: Physik, Fachbuchverlag Leipzig
- > 30Euro
- Stuart&Klages: Kurzes Lehrbuch der Physik, Springer
- > 50Euro
- Halliday, Resnick & Walker: Fundamentals of physics, Wiley VCH
- Meschede, Gerthsen Physik, Springer
- Tippler, Physik, Spektrum
- < 70Euro

Es hat die Wirkung die gemeiniglich gute Bücher haben, es macht die Einfältigen einfältiger, die Klugen klüger und die übrigen Tausende blieben ungeändert (Lichtenberg, 1775/76)

O.1) Was ist Physik?

Ethymologisch:

- physica (lat.): Naturlehre
- *physikós (gr.): die Natur betreffend

(Kluge, Ethymologisches Wörterbuch, de Gruyter)

Definition

Physik ist die Wissenschaft von Naturvorgängen, die durch Beobachtungen und Messungen festgestellt, verfolgt, gesetzmäßig erfasst und damit der mathematischen Darstellung zugänglich gemacht werden können

(dtv-lexikon)

O.1) Was ist Physik?

Ethymologisch:

- *physica (lat.): Naturlehre
- *physikós (gr.): die Natur betreffend

(Kluge, Ethymologisches Wörterbuch, de Gruyter)

Definition

Physik ist die Wissenschaft von Naturvorgängen, die durch Beobachtungen und Messungen festgestellt, verfolgt, gesetzmäßig erfasst und damit der mathematischen Darstellung zugänglich gemacht werden können

(dtv-lexikon)

Beispiel: Messung zum freien Fall von Galilei (1564-1642)

- Messung des Weges, den ein Körper in einer bestimmten Zeit durchfällt.
- Gesetz: Bei freien Fall verhalten sich die Wege h, die von einem Körper in 1,2,3,4,...
 Zeiteinheiten t durchfallen werden wie 1:4:9:16:...
- Mathematische Fassung des Fallgesetzes:
 - $h \sim t^2$ bzw. $h = const. \cdot t^2$

0.2) Physikalische Größen

- Physikalische Größe G: beschreibt Eigenschaft eines physikalische Objektes (z.B. die Länge eines Stabes)
- Zahlenwert {G}: quantitative Merkmal der Größe
- Physikalische Einheiten [G]: qualitatives Merkmal einer Größe. (International) festgelegte reproduzierbare Größe.
- Beispiel: Länge
 I = 1 m; {I} = 1; [I] = m

0.3) Einheiten

- Früher: Maße waren lokal definiert.
 Beispiel: Mehr als 100 verschiedene
 Ellenmaße (0,5-0,8m) in Deutschland
- 20. Mai 1875, Internationale
 Meterkonvention: Mehrere Staaten
 unterzeichnen Vereinheitlichung der
 Maßsysteme (in der Mechanik)
- 1960, Generalkonferenz für Maß und Gewicht: Annahme der des Système international d'Unités (SI)

0.3.1) SI Basiseinheiten

Einheit der	Name	Abkürzung	
Länge	Meter	m	
Zeit	Sekunde	S	
Masse	Kilogramm	kg	
Elektr. Stromstärke	Ampère	А	
Temperatur	Kelvin	K	
Stoffmenge	Mol mol		
Lichtstärke	candela	cd	

0.3.2) Definitionen für einige Basiseinheiten

- 1 Meter = Länge die Licht im Vakuum während der Dauer von 1/299.792.458 s durchläuft.
- 1 kg: Masse des 1kg Prototyps (Platin-Iridium Zylinder, 39mm hoch, Durchmesser Ø 39mm) aufbewahrt im Bureau International des Poids et Mesures in Sèvres bei Paris
- 1 Sekunde = 9.192.631.770 Schwingungen eines Übergangs im Cs ¹³³

0.3.3) Vielfache und Teile von SI Einheiten

Vorsatz	Zeichen	Faktor	Vorsatz	Zeichen	Faktor
Yotta	Υ	10 ²⁴	Milli	m	10-3
Zetta	Z	10 ²¹	Mikro	μ	10-6
Exa	E	1018	Nano	n	10-9
Peta	Р	10 ¹⁵	Piko	р	10-12
Tera	Т	1012	Femto	f	10 -15
Giga	G	109	Atto	а	10-18
Mega	М	106	Zepto	Z	10-21
Kilo	k	10 ³	Yocto	у	10- ²⁴

Beispiel: Längen

Durchmesser Ø Atomkern: 15 fm = 1,5 * 10 $^{-14}$ m

Durchmesser Ø Erde: $13 \text{ Mm} = 1.3 * 10^7 \text{ m}$

Durchmesser Ø Milchstrasse: $0.7 \text{ Zm} = 7 * 10^{20} \text{ m}$

0.3.4) Kohärente und nichtkohärente Einheiten

- Kohärente (auch abgeleitete) Einheiten, die aus den Basiseinheiten direkt gebildet werden können, z.B.
- Nichtkohärente
 Einheiten, die sich auf
 Basiseinheiten
 zurückführen lassen,
 jedoch treten von 1
 verschiedene
 Zahlenwerte auf, z.B.

- ➤ 1 Hertz = 1/s
- \gt 1 Newton = 1 (kg m)/s²
- > 1 Joule = 1 (kg m^2)/ s^2

- > 1 km/h = 1/3,6 (m/s)
- > 1 Hektar = 10000 m²
- > 1 Karat = 2*10⁻⁴ kg

0.3.5) Beispiel-Vergleich zwischen SI und SIfremden Systemen

Metrisch

- Geographische <u>Distanzen</u>
- > 1 km
- > 1 m
- Kleine Längen
- > 1 mm / 1 cm
- Höhe
- > 1 m
- Hohlmaß
- > 1 Liter (1 dm³)

Imperial

- Geographische Distanzen
- > 1 mile (1609,344 m)
- > 1 yard (0,9144 m)
- Kleine Längen
- > Inch (0,0254 m)
- *Höhe*
- > 1 foot (0,3048m)
- Hohlmaß
- > 1 pint (0,568 dm³)

0.3.5) Beispiel-Vergleich zwischen SI und SIfremden Systemen

Metrisch

Einfache Umrechnung.(1km = 1000m,1m = 1000mm)

 System leicht erweiterbar

Imperial

- Schwierige
 Umrechnung
 (1 mile = 1760 yards,
 1 yard = 3 feet,
 1 foot = 12 inches)
- Jedes Maß hat eigenen eingeschränkten Einsatzbereich. Erweiterung nicht vorgesehen (µf?)

0.4 Dimensionen

- Dimension gibt den Zusammenhang mit den Basisgrößen an (Zeit T, Länge L, Masse M,...)
- Praktische Nutzen: Dimensionsanalyse kann helfen Fehler in Rechnungen zu erkennen
- Beispiel: 1 Lichtjahr ist eine Längeneinheit?
 1 Lichtjahr = Geschwindigkeit von Licht * 1 Jahr
 = 3*10⁸ (m/s) * 3,16*10⁷ s
 = 9,47 * 10¹⁵ m = 9,47Pm
- > Lichtjahr hat die Dimension L (einer Länge)

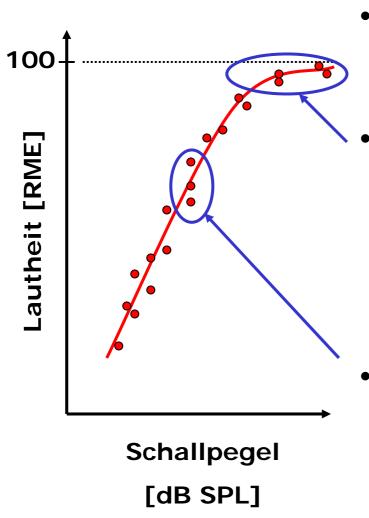
0.5 Meßgenauigkeit

 Physikalische Messungen sind immer mit Messfehlern behaftet, sodass Messwerte immer mit Fehlerangaben versehen werden sollten.

0.5.1 Fehlerarten

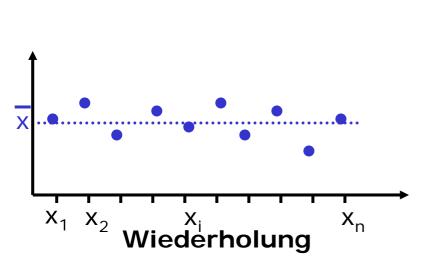
Systematischer Fehler:

Ursache im Messverfahren, z.B. infolge konstanter Missweisung des Messgerätes.


Gerichteter Fehler.

Statistischer Fehler:

Schwanken nach Größe und Vorzeichen um den wahren Wert z.B. durch Ungenauigkeit beim Ablesen von Messinstrumenten oder Schwankungen in der Messgröße.


Ungerichteter Fehler.

0.5.2) Beispiel: Restricted magnitude estimation

- Aufgabe einer Versuchperson: "Beurteile eine Empfindung auf einer Skala von 0 bis 100"
 - Systematischer Fehler:
 "Ceiling" Effekte.
 Versuchsperson berichtet
 nach der Messung, dass sie
 zu hohen Schallpegeln nicht
 mehr genug Dynamik hat
 - Statistischer Fehler: Versuchsperson antwortet mit unterschiedlichen Zahlwerten auf den gleichen Pegel

0.6) Fehlerrechnung

- Statistische Fehler lassen sich nur durch Messwiederholungen analysieren
- In einer Messreihe wird ein Größe n-mal gemessen (Stichprobenumfang n)
- \triangleright Messwerte $x_1, ... x_i, ... x_n$

$$\overline{X} = (1/n) \cdot \sum_{i=1}^{n} x_i = (1/n) \cdot (x_1 + x_2 + ... + x_n)$$