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Abstract
A comparison between automatic speech recognition (ASR)
and human speech recognition (HSR) is performed as prereq-
uisite for identifying sources of errors and improving feature
extraction in ASR. HSR and ASR experiments are carried out
with the same logatome database which consists of nonsense
syllables. Two different kinds of signals are presented to hu-
man listeners: First, noisy speech samples are converted to
Mel-frequency cepstral coefficients which are resynthesized to
speech, with information about voicing and fundamental fre-
quency being discarded. Second, the original signals with added
noise are presented, which is used to evaluate the loss of infor-
mation caused by the process of resynthesis. The analysis also
covers the degradation of ASR caused by dialect or accent and
shows that different error patterns emerge for ASR and HSR.
The information loss induced by the calculation of ASR fea-
tures has the same effect as a deteriation of the SNR by 10 dB.
Index Terms: human speech recognition, automatic speech
recognition, dialect, accent, phoneme confusions, MFCC

1. Introduction
Automatic speech recognition (ASR) has seen many advances
in the last years, but the large gap between recognition of spo-
ken language by humans and machines still prevents it from
everyday use. There are several causes for the inferior perfor-
mance of ASR compared to human speech recognition (HSR):
Human language models are for example more sophisticated
than ASR language models, as increasing ASR error rates are
observed for more complex tasks [1]. Furthermore, additive or
convolutive noise as well as speech intrinsic variabilities (such
as, e.g., dialect or speaking rate and effort) can severely degrade
ASR performance.

The aim of this study is to perform a fair comparison of hu-
man and machine phoneme recognition. For similar experimen-
tal conditions, the same speech database with non-sense sylla-
bles was used for ASR and HSR tests. Hence, human listeners
were not able to exploit context knowledge and language mod-
els in ASR could be disregarded. This helps to decouple the in-
fluence of two major sources of errors in ASR, namely the front-
end and the back-end. Thus, the focus is laid on the importance
of phoneme classification and feature extraction. The database
covers several dialects [2] which were included in the compar-
ison. Different error patterns of the confusions of phonemes
should help to identify sources of errors and to improve ASR
feature extraction.

It was also investigated whether the information contained
in ASR features is sufficient for human listeners to recognize
speech. Therefore, the most common features in ASR (Mel-
frequency cepstral coefficients / MFCCs) have been resynthe-
sized to audible signals [3] which were presented to human test
subjects. During the extensive HSR experiments, the original

signals were also presented as a reference condition. The re-
sults are analyzed on a microscopic scale with phoneme con-
fusion matrices, which have sucessfully been utilized for man-
machine-comparison earlier [4, 5].

2. Method
2.1. Speech database

The speech database used for HSR and ASR experiments is
the Oldenburg Logatome Corpus (OLLO) [2] which is specif-
ically targeted at a direct comparison of speech recognition
performance in HSR and ASR. It contains 150 different non-
sense utterances (logatomes) spoken by 40 German and 10
French speakers. Each logatome consists of a combination of
consonant-vowel-consonant (CVC) or vowel-consonant-vowel
(VCV) with the outer phonemes being identical.

To provide an insight into the influence of speech intrin-
sic variabilites on speech recognition, OLLO covers several
variabilities such as speaking rate and effort, dialect, accent
and speaking style (statement and question). The dialects con-
tained in OLLO are East Frisian, East Phalian, Bavarian and
standard German. The OLLO corpus is freely available at
http://sirius.physik.uni-oldenburg.de. If recognition rates of
the middle phonemes are analyzed (as done here), the num-
ber of response alternatives is reduced dramatically in compar-
ison to an open test. This makes HSR experiments tractable,
since a presentation of randomized logatomes with the same
outer phonemes is possible. The approach results in a closed
test setup and avoids out-of-vocabulary errors. The mid-
dle phonemes of logatomes are either vowels or consonant
phonemes which are listed below (represented with the Inter-
national Phonetic Alphabet (IPA)).

• Consonant phonemes: /p/, /t/, /k/, /b/, /d/, /g/,
/s/, /f/, /v/, /n/, /m/, /S/, /ţ/, /l/

• Vowel phonemes: /a/, /a:/, /E/, /e/, /I/, /i/, /O/,
/o/, /U/, /u/

For HSR experiments, the measurement time has to be limited
to a reasonable amount, which requires a subset of OLLO to be
selected for speech recognition tests. A representative speaker
set for which gender and dialect are uniformly distributed and
which exhibits average ASR performance was chosen for the
measurements. One male and one female speaker were selected
from each dialect region, which results in a total of ten speakers
or 1,500 utterances for the test set.

2.2. Experimental conditions

Speech intelligibility tests with human listeners included two
conditions:

1. Presentation of resynthesized signals: For a fair compar-
ison, it is investigated if the most common features in ASR con-
tain all the information needed for humans to understand speech
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on phoneme level. MFCC features are therefore resynthesized,
i.e. feature vectors used internally by the speech recognizer are
decoded to acoustic speech tokens. Since the calculation of
MFCCs results in a loss of information, these signals sound un-
natural (like synthesized speech). For example, the speaker’s
identity or even gender are usually not recognizable. Neverthe-
less, the resynthesized logatomes are perfectly understandable
in the absence of noise. To allow for a valid comparison, the
presented recognition scores were obtained with noisy speech.
By adding noise, redundant information in the speech signal is
masked, so that intelligibility is potentially decreased in con-
trast to an unprocessed signal. The reduction of redundancy
might be particularly critical in the presence of speech intrinsic
variabilities as, for example, regional dialect.

2. Presentation of original signals: Unaltered speech sig-
nals from the OLLO database are used as reference. A compar-
ison with the first condition should reveal if error patterns differ
and if speech information crucial for recognition is disregarded
when MFCC features are calculated.

2.3. Calculation of MFCCs

MFCCs are a compact representation of speech signals and have
been successfully applied to the problem of ASR. However, this
compact representation comes at the cost of information loss:
During the calculation, phase information and fine structure of
the spectrum are disregarded. This is useful in the absence of
noise, but may be detrimental in noisy conditions, because re-
dundant information exploited by humans is removed. Using
the phase information has, e.g., been found to be beneficial in
ASR [6]. In order to calculate MFCC features from speech, sig-
nals with 16 kHz sampling frequency are windowed with 30ms
Hanning windows and a frame shift of 10ms. Each frame un-
dergoes the same processing steps: Calculation of the amplitude
spectrum, reduction of the frequency resolution using a Mel-
scaled filterbank and calculating the logarithm and the inverse
discrete cosine transformation (IDCT) of its output. Twelve of
the lower coefficients plus an additional energy feature are se-
lected for the ASR experiments and HSR tests with resynthe-
sized speech.

2.4. Re-decoding of MFCCs to speech

In order to decode these features to an acoustic speech sig-
nal, a linear neural network trained with the OLLO training set
(c.f. Section 2.6) is used to construct the spectral envelope from
the cepstral coefficients. Additional information such as voic-
ing or fundamental frequency fg is not used for the calculation,
since this would give human listeners an unfair advantage over
ASR. Hence, an artificial excitation signal has to be used. Pilot
experiments showed that intelligibility is highest when a pulse
train with fg = 130 Hz is used as excitation signal (instead
of noise or a mixed noise-pulse signal). In a final step, the
spectral envelope and the artificial excitation signal are com-
bined. Due to the fixed fundamental frequency, resynthesized
speech sounds artificial and tinny, but remains understandable
when no noise is present. This algorithm was kindly supplied
by the Katholieke Universiteit Leuven [3].

HSR scores are usually very close to 100% for the clean
condition, both for the unaltered signals and the signals derived
from cepstral coefficients. In [5], the lowest recognition rate
observed for non-dialect speech was 99.1 percent for a simi-
lar task. This clearly demonstrates the excellence of the hu-
man auditory system, but does not allow for a valid analysis of
phoneme confusions, because differences at very low or high

error rates often are outside the range of reliably observable dif-
ferences (ceiling effect). Hence, speech-shaped noise is used
to increase the difficulty of the listening task. In case of resyn-
thesized speech, noise is added before MFCCs are calculated
from the original signals. Pilot measurements with one test
subject showed that a ceiling effect is always observed when
the same SNR is used for resynthesized and original signals,
i.e. the recognition rates are either too low for the first or too
high for the second condition to obtain valid and comparable
results in reasonable measurement time. Based on these first
measurements, the SNR for each condition was chosen to pro-
duce approximately the same recognition rates. Resynthesized
and original signals were presented at an SNR of 0 dB and -10
dB, respectively.

2.5. Human speech recognition test setup

Five normal-hearing listeners (two male, three female) with-
out a noticeable regional dialect participated in the HSR tests.
Signals were presented in a soundproof booth via audiological
headphones (Sennheiser HDA200). An online freefield equal-
ization and randomization of logatomes was performed by the
measurement software MessOL. Feedback or the possibility to
replay the logatome was not given during the test procedure. In
order to avoid errors due to inattentiveness, listeners were en-
couraged to take regular breaks. After a training phase, subjects
were presented a sequence of logatomes at a level of 70 dB SPL.
For each presentation, the logatome had to be selected from a
list of CVCs or VCVs with the same outer phoneme and dif-
ferent middle phonemes. A touch screen and a computer mouse
were used as input devices. In order to avoid speaker adaptation,
all resynthesized signals were presented before the subjects lis-
tened to the unprocessed speech files. The HSR measurements
include 1,500 presentations per listener and test condition (orig-
inal and resynthesized signals), which resulted in a total of 2
x 7,500 presentations. The cumulative measurement time was
about 34 hours, including pauses and instructions for listeners.

2.6. Automatic speech recognition test setup

ASR experiments were carried out with a Hidden Markov
Model (HMM) with three states and eight Gaussian mixtures
per HMM state. The system was set up to closely resemble
the closed test which was used for human intelligibility tests,
i.e. confusions could only occur for the middle phonemes. This
was achieved by training and testing several HMM systems with
each corresponding to a different outer phoneme. Additional
delta and acceleration features were added to the 13 cepstral
coefficients, yielding a 39-dimensional feature vector per time
step. The ASR test set contained the same utterances as used in
HSR experiments (ten speakers with 150 utterances each) with
the exception that all repetitions of logatomes were used instead
of just one (c.f. Section 2.1). Speech files from the remaining 40
speakers in OLLO were chosen for the training process, which
results in a speaker independent ASR system. The frequency
of phonemes and gender were equally distributed in the training
and test set. ASR recognition scores were obtained for different
SNRs, for which a speech-shaped noise was added to the utter-
ances; the same SNR was used for training and test, resulting in
a matched training-test-condition.

3. Results
Overall HSR and ASR results for several conditions are pre-
sented in Table 1: Due to the adjustment of the SNR (c.f. Sec-
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tion 2.4) the total recognition scores for both HSR conditions
are very similar (shaded elements). Consonants are recognized
slightly better than vowels in case of resynthesized signals, but
intelligibility of consonants is lower for unprocessed signals,
whereas the scores for vowels are higher in spite of the lower
SNR (color-inverted elements). Regarding dialect, no large dif-
ferences between the conditions can be observed: Although the
order of ’no dialect’ and ’East Frisian’ is swapped for both HSR
conditions, differences in recognition scores are much smaller
than for vowel and consonant recognition. The performance for
the dialects decreases in the order Bavarian, East Phalian and
French.

Confusion matrices (CMs) characterize how often a pre-
sented phoneme was recognized or confused with response al-
ternatives (see Figs. 1 to 3). The matrices are based on the
complete measurements for the corresponding condition, i.e.,
CM scores are averaged over all dialects. For the HSR mea-
surements, all presentations in a row correspond to 250 or 400
single presentations of consonants and vowels, respectively. In
case of ASR, this corresponds to 150 (consonant recognition)
or 240 (vowel recognition) utterances.

orig
-10 dB

resynth
0 dB clean 10 dB 0 dB -10 dB

74.0 73.8 82.1 79.3 68.5 34.0
65.7 74.3 85.1 80.2 59.5 21.6
81.3 73.3 79.4 78.5 76.4 44.9

No dialect 81.5 77.5 88.4 87.0 75.4 42.6
East Frisian 80.9 79.2 84.5 82.5 72.4 34.0

Bavarian 77.6 75.1 79.1 75.4 66.8 36.2
East Phalian 70.2 71.3 84.1 78.5 68.0 30.8

French 59.7 65.7 74.2 73.2 59.8 26.3
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Table 1: Recognition rates in % for HSR (original signals, pre-

sented at -10 dB SNR and resynthesized signals, presented at 0

dB SNR) and ASR (at different SNRs). In the first three rows,

the average accuracy (’total’) as well as consonant (VCV) and

vowel (CVC) rates are reported. The subsequent rows show the

recognition performance depending on dialect and accent.

4. Discussion
A direct comparison of ASR and HSR performance shows that
human speech recognition is superior to the ASR system under
equal conditions, as presented in Table 1. The total HSR and
ASR accuracies at an SNR of -10 dB are 74.0% and 34.0%,
respectively (encircled elements), which corresponds to a rela-
tive increase of the word error rate (WER) of 154%. The gap
narrows if the information for human listeners is limited to the
information content of MFCCs: For resynthesized signals at 0
dB SNR, the recognition score is 73.8% and the correspond-
ing ASR accuracy is 68.5%, resulting in an WER increase of
20.0%.

The SNRs for both HSR conditions were chosen so that
average recognition rates are similar. The choice of SNRs was
based on the presentation of only few test lists to one human lis-
tener and proved to be reasonable for other test subjects as well,
as the overall accuracies are very close to each other: The aver-
age scores were 73.8% (resynthesized signals) and 74.0% (orig-
inal signals). Therefore, the information loss caused by MFCCs
can be expressed in terms of the signal-to-noise ratio, i.e. the

58 4 9 10 1 5 4 8 0
2 74 5 0 10 4 0 0 4
4 2 70 1 18 0 3 1 0
11 2 44 3 13 26 1 2

2 4 74 13 3 3 0
3 11 2 2 73 5 2 1 1

0 87 5 0 4 1 2
1 1 1 89 7 1
1 16 1 6 3 70 2 1

0 1 4 1 2 61 12 0 19
4 3 5 12 58 18

1 2 98
3 2 95

2 4 2 2 4 88

Figure 1: Confusion matrix (CM) for consonant phonemes, de-

rived from human speech recognition tests with resynthesized

speech at an SNR of 0 dB. The matrix element Cij denotes how

often the phoneme in row i was classified as the phoneme in

column j. Rows are normalized to 100%. Matrix elements with

a value of zero are not plotted and elements < 5 are plotted in

light gray for reasons of readability. Inverted elements denote

large differences between this CM and Fig. 2.

54 1 11 16 7 3 1 5 1 1
9 27 9 3 17 1 1 33
16 2 55 3 7 9 1 1 6
15 1 3 39 8 7 2 16 5 3 1
3 3 1 6 60 9 4 5 2 3 5
9 1 14 9 13 39 8 4 2 2
1 1 1 1 83 5 1 1 3 5
7 1 7 1 1 76 6 1 1
3 1 2 27 7 8 9 36 2 3 3

1 1 3 1 3 61 18 1 11
1 1 5 1 1 4 31 54 2

1 3 96
9 1 1 1 1 89

1 1 3 2 2 2 19 3 1 66

Figure 2: CM for consonant phonemes, derived from ASR ex-

periments for which training and test data at 0 dB SNR were

used. See Fig. 1 for details.

SNR of resynthesized signals has to be 10 dB higher in order to
obtain similar recognition performance. This is consistent with
the model of human speech perception using an auditory model
as front-end to ASR as presented in [8].

The vowel recognition rates for both HSR conditions show
that the information loss during feature calculation is particu-
larly problematic for vowels, as accuracy drops by 10% when
using resynthesized instead of original signals even though the
SNR is lower for the original signals. Although MFCCs have
been found to encode the spectral shape of vowels well, the
reduced frequency resolution may result in inferior differentia-
tion between proximate formants compared to human listeners.
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80 13 4 4 74 13 5 0 1 8 71 19 3 0 7
5 85 0 0 7 3 4 85 5 6 16 77 7
0 83 11 6 2 1 76 13 9 0 0 2 1 87 1 8 0

0 1 85 7 8 0 1 2 85 4 9 0 3 89 5 4
4 4 73 19 1 16 8 64 12 0 0 18 3 64 14 0

9 3 89 0 0 16 8 76 1 9 4 86 0
2 2 1 82 5 9 13 4 1 1 68 4 10 5 6 0 1 81 2 6

0 1 88 7 4 3 84 8 5 1 2 80 12 5
0 4 1 1 7 69 19 2 18 7 60 13 0 2 1 25 10 50 12
0 0 2 0 14 3 81 0 31 6 63 0 0 2 0 11 7 78

Figure 3: CMs for vowel phonemes, derived from HSR tests with original signals at -10 dB SNR (left panel), from resynthesized signals

at 0 dB SNR (middle panel) and from ASR experiments at 0 dB SNR (right panel). Gray-shaded elements highlight degradations that

emerge when resynthesized signals instead of the original ones are used. Encircled cells show improvements of ASR compared to

resynthesized features, while color-inverted elements show degradations. See Fig. 1 for details.

The performance drop may also be caused by discarding the
phase component. Corresponding findings have been obtained
for ASR where performance was improved by exploiting phase
information [6] and in HSR when the audible information was
limited to the power spectrum of noisy signals [7]. Prelimi-
nary measurements have shown that the information contained
in MFCCs is sufficient to recognize speech in the absence of
noise, since the intelligibility in HSR is not degraded when us-
ing resynthesized signals instead of the original ones. However,
the presented measurements in noise clearly show that during
the calculation of MFCCs a significant amount of useful infor-
mation is removed. These conclusions are based on the assump-
tion that the decoding algorithm for MFCCs uses all the infor-
mation contained in MFCCs.

A comparison of the CMs shows that in some cases recog-
nition performance is severely degraded when presenting resyn-
thesized signals instead of original ones (gray-shaded elements
in Fig. 3). This suggests that too much redundancy is re-
moved by the feature calculation process so that the according
phonemes cannot be distinguished. In other cases, ASR perfor-
mance is higher than HSR with resynthesized features (encir-
cled elements) which suggests that either the feature informa-
tion is not completely made audible by the decoding algorithm
or the auditory model of the ASR back-end covers the acoustic
space optimally and is thus superior to HSR for these micro-
scopic confusions. Finally, color-inverted elements in the CMs
(Figs. 1-3) denote cases in which ASR performs worse than hu-
mans with resynthesized signals which means that the feature
information is not optimally exploited by the back-end. Many
of the observed errors can either be attributed to feature extrac-
tion or to the back-end, which might be helpful to improve ASR.

5. Conclusions
1. Even for the relatively simple task of phoneme classification,
the difference between HSR and ASR remains considerably
large: The increase of relative WER is larger than 150% at
-10 dB SNR. If the information contained in MFCC features
is resynthesized and presented to human listeners, the gap
narrows, but error rates are still 20% higher for ASR.
2. The information loss caused by the calculation of Mel-
frequency cepstral coefficients can be expressed in terms of
the signal-to-noise ratio: Similar recognition results in HSR
are obtained when the SNR is 10 dB higher for resynthesized

signals instead of unaltered speech files.
3. Regarding dialect, no major differences between resynthe-
sized and original signals can be observed. This suggests that
information is equally well encoded in MFCCs for the dialects
which were subject of the analysis.
4. For the analyzed SNR conditions, information needed to
distinguish between vowel phonemes seems to be encoded
suboptimally by MFCCs which may be caused by missing
phase information or reduced spectral resolution.
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