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Abstract 
In this study speech intelligibility in noise for normal-hearing 
subjects is predicted by a model that consists of an auditory 
preprocessing and a speech recognizer. Using a highly 
systematic speech corpus of phoneme combinations 
(logatomes) allows the analysis of response rates and 
confusions of single phonemes. The predicted data is 
validated by listening tests using the same nonsense speech 
material. If testing utterances that are not identical to those in 
training material are used, the psychometric function in noise 
is predicted with an offset of 13 dB to higher signal-to-noise-
ratios (SNR). This is consistent with the man-machine 
performance gap between human speech recognition (HSR) 
and automatic speech recognition (ASR) [1].  
However, this offset reduces to 4 dB in a second model 
design with identical recordings for training and testing. 
Furthermore predicted confusion matrices are compared to 
those of normal-hearing subjects with the second model 
design.  

Index Terms: speech intelligibility prediction, auditory 
model, confusion matrix, phonemes 

1. Introduction 
Typical models that predict speech intelligibility in noise for 
normal-hearing subjects, as e.g. the Speech Intelligibility 
Index (SII) [2], analyse the long-term spectra of speech and 
noise separately in different frequency channels. The outcome 
of these models can be transformed to the speech reception 
threshold (SRT), which gives the SNR of 50% speech 
intelligibility and the slope of the psychometric function. 
Recognition rates and confusions of phonemes can not be 
studied using these models.  

The model proposed here is based on an idea of Holube 
and Kollmeier [3] and consists of a psychoacoustically 
motivated preprocessing of the time-signal and a standard 
dynamic-time-warp (DTW) speech recognizer [4]. By 
determining the distances between a test utterance and 
training utterances “on a perceptual scale”  the utterance with 
the least distance is taken as the recognized one. 

For prediction and validation we used the context-free 
speech database Oldenburg Logatome Corpus (OLLO) [5]. It 
contains 70 different vowel-consonant-vowel (VCV) and 80 
CVC logatomes composed of German phonemes. Each 
logatome was recorded 18 times by each speaker. 6 different 
speech articulation styles are included: “slow”, “normal”, 
“fast”, “loud”, “quiet” and “questioning”. The use of this 
corpus allows systematical investigations of phoneme 
recognition rates and confusions. At the same time it avoids 
that human listeners can use any semantic knowledge for 
intelligibility. 

2. Measurements 

2.1. Method 

10 clinically normal-hearing subjects (7 male, 3 female) aged 
between 19 and 37 years were employed. The intelligibility of 
150 logatomes was measured in a sound isolated booth at 
different signal-to-noise-ratios. All recordings were taken 
from the OLLO database and were spoken by a single German 
speaker with speech variability “normal”. The 150 recordings 
were randomly split into two lists of the same length for each 
of the 5 SNRs and the resulting 10 lists were randomly inter-
leaved for presentation. The speech was presented at a level of 
60 dB SPL via Sennheiser HDA 200 headphones that were 
free-field equalized using a FIR-filter with 801 coefficients. A 
non-modulated running noise with speech-like frequency 
spectrum was used (ICRA-1 noise, [6]). All audio signals 
were presented diotically. Response alternatives for a single 
logatome had the same preceding and subsequent phoneme 
(closed test); hence, the subject had to choose from 10 or 14 
alternatives when a CVC or a VCV was presented, which one 
was recognized. 

2.2. Results 

Figure 1: Psychometric function for normal-hearing 
subjects measured with logatomes in ICRA-1 noise at 
5 fixed SNR respectively. Error bars show the inter-
individual standard deviation for 10 subjects. The 
fitted function is shown for comparison. 

Figure 1 shows the results of the speech intelligibility test 
plotted versus the SNR. Every symbol represents the mean 
intelligibility of CVCs, VCVs or all logatomes for 10 
subjects. The error bars show the inter-individual standard 
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deviations. The model function given in equation (1) was 
fitted to the data by varying the free parameters SRT (SNR at 
55% intelligibility) and s (slope of the psychometric function 
at the SRT). 
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Here: x: SNR, g: guessing probability (g = 8.9 %) and Ψ: 
intelligibility.  The fit was performed by maximizing the 
likelihood under the assumption that the recognition of each 
logatome is a Bernoulli trial (cf. [7]). This yielded a slope of 
(5.4 ± 0.6) %/dB and a SRT of (-12.2 ± 1.1) dB.  

Note that CVCs have always a higher intelligibility than 
VCVs except for -20 dB SNR. 

Figure 2: Confusion matrix (response rates in %) for 
normal-hearing subjects at -15 dB SNR, measured 
with consonants embedded in logatomes. Row: 
presented phoneme, column: recognized phoneme 
Grey scales denote different grades of response rates. 
Response rates below 8%  are not shown. 

Figure 3: Confusion Matrix for normal-hearing 
subjects at -15 dB SNR, measured with vowels 
embedded in logatomes. The display is the same as in 
Fig.2. 

Figure 2 and 3 show the confusion matrices of consonants 
and vowels for all 10 subjects. Due to the design of OLLO 
each middle consonant was presented 5 times and every 
vowel 8 times at a given SNR to each subject. Hence, the 
overall number of presentations of each phoneme for these 
matrices are 50 and 80 respectively. The SNR was chosen to  
-15 dB, which corresponds to an intelligibility of 33% (VCV) 
and 52% (CVC). Each row symbolizes the presented 

phoneme and each column the recognized one. Correct 
recognized phonemes are shown as diagonal elements of the 
matrices. Due to clarity all entries below 8% were left blank. 

Corresponding to Fig. 2 fricative consonants like “ß”, “s” 
and “ts” are recognized best whereas voiced consonants like 
“n”, “v” and “b” are recognized worst or not at all. Note the 
big variance between the diagonal elements of “n” and “ß”. 
Unvoiced plosive consonants like “p”, “t” and “k” are 
recognized at a significantly higher recognition rates than 
voiced ones (“b”, ”d”, ”g”). There are almost no confusions 
between consonants with very high frequency content as “ß”, 
“ts” and those with low one. However there does not seem to 
be a systematic pattern of confusions.  

There is some kind of clustering in the vowel confusion 
matrix (Fig. 3): “ø“, “¨“, “o“ and “u“ are recognized worst 
and there are many confusions between them. The next cluster 
is “a”, “a:“ with no significant confusions with other vowels. 
The vowels best recognized are “´“, “ˆ“, “e“ and “i“. 

3. The perception model 

3.1. Specification 

The perception model applied in this study was initially 
developed by Dau et al. [8] and it was further on used to 
model many different psychoacoustical experiments with 
different masking conditions as well as modulation detection 
tasks in an extended version [9]. In this study this extended 
version is combined with a standard DTW speech recognizer 
to mimic the decision process in a closed speech intelligibility 
test.  

Figure 4: Scheme of the speech intelligibility model. 
The model calculates the distance between both, the 
template waveform and the testsignal waveform after 
preprocessing in the same way. GFB: gammatone 
filterbank, HC: hair cell modell, AL: adaptation 
loops, MFB: modulation-filterbank, DTW: Dynamic-
Time-Warp speech recognizer. 

Figure 4 shows the model structure. The level of the 
template speech waveform is set to 60 dB SPL and both the 
background ICRA-noise and a hearing threshold simulating 
noise for normal-hearing listeners is added. The resulting 
waveform is filtered using a gammatone filterbank ([10]) with 
27 frequency channels between 236 Hz and 8 kHz equally 
spaced on an ERB-scale. The filter-outputs are half-wave 
rectified and low pass filtered at 1 kHz in a hair cell model. 
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After processing with five consecutive adaptation loops with 
time constants chosen as in [3] the signal is again filtered by a 
modulation filterbank, that consists of 4 modulation filters: 
one low pass at 2.5 Hz and three band passes with center 
frequencies of 5, 7.5 and 10 Hz and bandwidths of 5 Hz, 
respectively. The outcome is an “internal representation“ (IR) 
of the time signal. The testsignal + noise waveform is 
preprocessed in the same way by the perception model. Note 
that “noise” in this scheme means running ICRA background 
noise added to a running hearing threshold simulating noise 
for normal-hearing subjects. All samples of the training 
vocabulary were equalized to the same length before 
processing by attaching silence. This was done to rule out a 
possible discrimination cue due to the individual length of the 
speech recordings. 

The IR of  the template and the IR of the testsignal are the 
inputs of the speech recognizer, that calculates the Euclidian 
distance between the two versions. To allow for a mismatch in 
the temporal structure between sample and template a DTW 
algorithm [4] performs local stretching and compression of 
the time axes of both IRs in order to achieve a minimal 
distance. The logatome with the least distance is chosen as the 
recognized one. The response alternatives given to the model 
were the same as for HSR. 

Two model configurations were realized in this study: 

• In configuration A there were 5 IRs per logatome as 
templates. None of the 5 original recordings was 
identical to the tested time signal. The logatome that 
yielded the minimum mean distance of all 5 IRs was 
chosen as the recognized one. This mimics a realistic 
task for common speech recognizers because the exact 
acoustic utterance is unknown. 

• Model configuration B contained a single IR per 
logatome as a template whereas the original speech 
material was identical to that of the test signal. Thus the 
resulting IRs differ only in the initially added 
background noises. In contrast to configuration A this 
configuration disregards the natural variability of 
speech thus it assumes perfect knowledge of the 
“template” to be matched with the DTW algorithm. 

There are many combinations possible to select speech 
material from OLLO for performing these model calculations. 
For these two model configurations the speech recognizing 
task was calculated 10 times using each time a new 
combination of speech recordings spoken by the same 
speaker. 

3.2. Model predictions and comparison with 
listening tests 

The resulting psychometric functions of the ASR experiments 
are shown in Fig. 5. Additionally the fitted psychometric 
function for normal-hearing subjects from Fig. 1 is plotted for 
a reference. Configuration A shows the same recognition rates 
for CVCs and for VCVs. The resulting SRT calculated by a 
fitted psychometric function is 1.3 dB and thus is more than 
13 dB higher than that in HSR. It was assumed that in this 
model configuration, which closely resembles ASR tasks, 
100% model recognition rate can never be achieved even 
without background noise. This is due to the inherent speech 
variability that is still a problem in ASR tasks [11]. To 
include this fact a third parameter (the difference between  
100% and the saturation recognition rate of the model) was 

introduced into the fitting routine. With a slope of 5.8 %/dB 
the reference slope is reproduced quite well. 

Figure 5: Predicted psychometric functions for model 
configurations A and B derived with utterances of 
logatomes in ICRA-noise at fixed SNR respectively. 
For comparision inserted: fit to measured normal-
hearing psychometric function (HSR) from Fig. 1. 

A much better prediction of the normal-hearing psychometric 
function is achieved with model configuration B. The order of 
CVC and VCV as well as the upper part of the reference 
curve is modelled correctly. 100 % recognition rate is reached 
at 10 dB SNR. The  slope (8.9 %/dB) deviates slightly from 
the reference, the SRT (-7.6 dB) is much closer to human 
listeners SRT, but still there is a gap of 4.6 dB between them.

In the following only confusion matrices for model 
configuration B are evaluated and compared to HSR 
confusion matrices. The SNR was chosen to -10 dB to ensure 
about the same intelligibility as for human listeners.  

Figure 6: Consonant confusion matrix for model 
configuration B at -10 dB SNR, The  display is the 
same as in Fig.2. 

Figure 6 and 7 show these confusion matrices. Comparing 
figure 2 to figure 6 the same consonants “ß”, “ts” and “s” are 
recognized best by the model but that high human recognition 
rates like 92% for “ß” are not reached. However, some 
consonants like “n”, “v” and “b” are recognized even better 
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by the model than by human listeners. There is no significant 
difference between the model recognition rates for unvoiced 
and voiced plosives. Overall the “contrast” of the model 
matrix between the diagonal elements is worse than in HSR.  

Figure 7: Vowel confusion matrix for model 
configuration B at -10 dB SNR, The  display is the 
same as in Fig.2. 

This is also the case for the model confusion matrix for 
vowels: The clustering found in figure 3 could not be 
reproduced. At -10 dB SNR the overall recognition rate of 
CVC utterances is significantly worse than for normal-hearing 
subjects at -15 dB SNR (38% compared to 52%).  However, 
the phonemes “ø“ and “¨“ are recognized slightly better by 
the model than in HSR. The characteristic nearly uniform 
columns at “o“ and “u“ provide an indication that these 
phonemes are the most probable vowels to recognize by 
presenting any vowel  at that high SNRs.  

4. Discussion 
Two model configurations were employed, one taking the 
natural variability of speech into account, the other one 
disregarding it. Our results show that there is only a chance of 
predicting the psychometric function for normal-hearing 
listeners by ignoring the variability of speech itself, i.e. taking 
identical speech test and training utterances as inputs for the 
model. Conversely this gives an indication that speech 
variability is not crucial to speech intelligibility of normal-
hearing subjects at high SNRs. Human speech recognition is 
as perfect and in some phonemes better than the prediction if 
the listener knew the audio signal before the recognition 
process. However speech variability is crucial to a model that 
does not hold the exact speech recording in its training 
vocabulary. 

Although confusion matrices of HSR and ASR are quite 
similar (especially the consonant phoneme ones), those of the 
model show a smaller contrast between highly and poorly 
recognized phonemes. This can be an indication that human 
listeners use more information from high frequencies to 
discriminate nonsense speech material than it is done by this 
model. In each ASR confusion matrix there is a bias 
favouring some phonemes, like “o“ and “u“ in Fig. 7, 
independent of the type of the presented phoneme. This bias 
could be corrected by changing the selection criteria, which 
would probably also be done by human listeners during the 
measurement procedure. 

5. Conclusions 
This speech intelligibility model is based on the time signal of 
speech and consists of a psychoacoustically motivated 

preprocessing and a simple speech recognizer. It is capable of 
predicting essential aspects of speech intelligibility of normal-
hearing subjects. By considering the intrinsic variability of 
speech the modeled SRT is 13 dB higher than human listeners 
show. This is consistent with findings of other studies 
exploring the human-machine gap [1]. Introducing a perfect 
knowledge about the speech signal to recognize allows for 
predicting the psychometric function with a much smaller 
offset. This refers to the “optimal detector” concept required 
to model human perception assuming that the “world 
knowledge” yields an optimal template in each HSR 
experiment. In addition it was possible to detect characteristic 
differences between phoneme confusion matrices of HSR and 
ASR.  

Future studies should investigate speech intelligibility of 
hearing-impaired subjects and also should analyse the 
influence of the loss of dynamic range at the hearing-impaired 
on speech intelligibility in a microscopic way. 

6. Acknowledgements 
We would like to thank the EU HearCom Project, the 
‘Förderung wissenschaftlichen Nachwuchses des Landes 
Niedersachsen’ (FwN) and SFB/TR 31 ‘Das aktive Gehör’ 
(URL: http://www.uni-oldenburg.de/sfbtr31) for funding the 
research reported in this paper. 

7. References 
[1] Meyer, B., T. Brand, and B. Kollmeier, Phoneme 

Confusions in Human and Automatic Speech 
Recognition, this issue. 

[2] ANSI, ANSI S3.5-1997 - Methods for Calculation of the 
Speech Intelligibility Index. 1997. 

[3] Holube, I. and B. Kollmeier, Speech intelligibility 
prediction in hearing-impaired listeners based on a 
psychoacoustically motivated perception model.  J. 
Acoust. Soc.  Am., 1996. 100(3): p. 1703-16. 

[4] Sakoe, H. and S. Chiba, Dynamic Programming 
Algorithm Optimization for Spoken Word Recognition.
IEEE Transactions on Acoustics, Speech, and Signal 
Processing, 1978. ASSP-26(1): p. 43-49. 

[5] Wesker, T., et al., Oldenburg logatome speech corpus 
(OLLO) for speech recognition experiments with humans 
and machines, in Interspeech 2005, p. 1273-1276. 

[6] Dreschler, W.A., et al., ICRA Noises: Artificial Noise 
Signals with Speech-like Spectral and Temporal 
Properties for Hearing Instrument Assessment.
Audiology, 2001. 40: p. 148–157. 

[7] Brand, T. and B. Kollmeier, Efficient adaptive 
procedures for threshold and concurrent slope estimates 
for psychophysics and speech intelligibility tests. J. 
Acoust. Soc. Am., 2002. 111(6): p. 2801-2810. 

[8] Dau, T., D. Püschel, and A. Kohlrausch, A quantitative 
model of the "effective" signal processing in the auditory 
system: I. Model structure. J. Acoust. Soc. Am., 1996. 
99: p. 3615-3622. 

[9] Dau, T., Modeling auditory processing of amplitude 
modulation. J. Acoust. Soc. Am., 1997. 101: p. 3061(A). 

[10] Hohmann, V., Frequency analysis and synthesis using a 
Gammatone filterbank. Acta acustica / Acustica, 2002. 
88(3): p. 433-442. 

[11] Lippmann, R.P., Speech recognition by machines and 
humans. Speech Communication, 1997. 22(1): p. 1-15. 

413


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Thomas Brand
	Also by Birger Kollmeier
	------------------------------

