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1 Introduction

Digital processing in modern hearing aids allows the implementation of a wide
range of sound processing schemes. Monaural and binaural noise suppression
can enhance speech quality and speech intelligibility in adverse acoustical en-
vironments. However, the performance of these algorithms is strongly depen-
dent on a proper and reliable classification of the acoustical situation. Noise
suppression techniques like spectral subtraction, for example, are strongly de-
pendent on a fast and proper estimate of the present noise level. Thus, an
important task of the classification algorithm is to decide whether speech or
noise is present. If both speech and noise are present, an estimate of the signal-
to-noise ratio is desired. Furthermore, the classification of the monitoring al-
gorithm should work on short time scales, because most noise suppression al-
gorithms need an exact detection of speech pauses for good performance. The
classification algorithm which is presented in this paper bases on so-called am-
plitude modulation spectrograms (AMS). Its basic idea is that both spectral
and temporal information of the signal is used to attain a separation between
“acoustical objects” within the signal. The AMS approach is motivated by
neurophysiological experiments on periodicity coding in the auditory cortex
of mammals, where neurons tuned to different center frequencies were found
to be organized almost orthogonal to neurons which are tuned to different
modulation frequencies [1]. Kollmeier and Koch [2] implemented a binaural
noise suppression scheme which bases on AMS sound representation. They
could demonstrate a benefit in terms of speech intelligibility, in comparison
to unprocessed speech.

2 Generating AMS patterns

In a first processing step, the input signal is long-term level adjusted, i.e.,
changes in the overall level are compensated for, whereas short-term level dif-
ferences (e.g., those between successive phonemes) are maintained to serve as
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Figure 1. AMS pattern generated from voiced speech (left) and speech simulating noise
(right). Bright and dark shading indicates high and low amplitude, respectively. Each
AMS pattern represents a 32-ms portion of the input signal.

additional cues for classification. This level adjustment is realized by dividing
the input signal by its 2 Hz-low pass filtered rms function. The level-adjusted
signal is then subdivided into overlapping segments of 4.0 ms duration with
a progression of 0.25 ms for each new segment, and transformed into a com-
plex spectrum with a FFT. The resulting 64 complex samples are considered
as a function of time, i.e., as bandpass-filtered complex time signal. Their
respective envelopes are extracted by squaring. This envelope signal is again
segmented into overlapping segments of 128 samples (32ms) with an overlap of
64 samples. A further FFT is computed and supplies a modulation spectrum
in each frequency channel. By an appropriate summation of neighboring FFT
bins, both axes are scaled logarithmically with a resolution of 15 channels
for center frequency (100-7300 Hz) and 15 channels for modulation frequency
(50-400 Hz). In a last processing step, the amplitude range is log-compressed.
Examples for AMS patterns can be seen in Fig. 1. The left AMS pattern was
generated from a voiced speech portion. The formant structure is represented,
as well as the periodicity at the fundamental frequency (i.e., approx. 250 Hz)
in each center frequency band. The AMS pattern on the right was generated
from speech simulating noise. The typical spectral tilt can be seen, but no
structure across modulation frequencies.

3 Neural Network Training and Classification Experiments

Speech/noise classification of AMS patterns is performed with a standard feed-
forward neural network. It consists of an input layer with 225 (15x15) neurons,
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Table 1. Classification results in pure speech/pure noise conditions

database # of AMS | % correct
patterns
training data:
speech | PHONDAT 30948 98.4
noise various 30948 99.5
test data:
speech | PHONDAT 10383 95.7
ZIFKOM 9829 93.6
TIMIT 1573 91.7
noise NOISEX 10383 96.8
ALIFE 2507 92.7

a hidden layer with 20 neurons, and an output layer with 1 output neuron.
The target activity of the output neuron for training is set to 0.95 or 0.05
for AMS patterns generated from speech or noise, respectively. For training,
495 s of speech from 28 different talkers and 495 s of noise from 14 different
noise sources were used, yielding 61896 AMS training patterns in total. After
training, AMS from “unknown” signal segments are classified with an output
neuron activity threshold of 0.5: If the network responds to an AMS pattern
with an output neuron activity above 0.5, the segment is classified as “speech”,
otherwise as “noise”. Classification results on different databases are shown
in Tab. 1. For speech, the best classification results were gained when the test
data originated from the same database as the training material (PHONDAT).
Degraded performance for TIMIT-data can be explained by different long-
term spectra of these databases due to differences in the recording conditions.

4 SNR estimation in mixed situations

In situations where both speech and noise are present, segment classification
as either “speech” or “noise” is not appropriate. Instead, an estimation of the
present signal-to-noise ratio (SNR) is desired. To achieve this, the network
is trained with AMS patterns generated from mixtures of speech and noise.
The target activity then depends on the “local” SNR of the according AMS
analysis frame. The SNR range from 25 to -10 dB is linearly transformed to
target activities between 0.95 or 0.05. SNRs above 25 dB and below -10 dB
are transformed to 0.95 and 0.05, respectively. The training AMS patterns
were generated from a mixture of the training material described in Sec. 3.
After training, the output neuron activity of the network when presenting “un-
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Figure 2. Estimation of SNR in car noise (left) and cafeteria noise (right).

known” AMS patterns serves as estimate for the present SNR. In Fig. 2, two
examples of SNR estimations are illustrated. The solid lines show the actual
SNR, the dotted lines show the estimate of the SNR (after re-transforming
output neuron activity to SNR). On the left, the input signal was a mixture
of speech and car noise. In that condition, the algorithm can predict the
present SNR with satisfactory accuracy. On the right, the input signal was
a mixture of speech and cafeteria noise. Here, the estimated SNR is higher
than the actual SNR most of the time. This might be due to the “speech-like”
characteristic of cafeteria noise.

5 Conclusion

It was demonstrated that the combination of spectral and temporal informa-
tion of acoustic signals can be exploited for automatic classification of the
acoustical situation. The precision of SNR estimation in situations where
both speech and noise are present is dependent on the background noise. The
performance might be improved by extending the amount of training data
and modifying the SNR - target activity transformation function.
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