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Abstract
In the last decade, several studies have shown that the robust-
ness of ASR systems can be increased when 2D Gabor filters
are used to extract specific modulation frequencies from the
input pattern. This paper analyzes important design parame-
ters for spectro-temporal features based on a Gabor filter bank:
We perform experiments with filters that exhibit different phase
sensitivity. Further, we analyze if non-linear weighting with a
multi-layer perceptron (MLP) and a subsequent concatenation
with mel-frequency cepstral coefficients (MFCCs) has benefi-
cial effects. For the Aurora2 noisy digit recognition task, the use
of phase sensitive filters improved the MFCC baseline, whereas
using filters that neglect phase information did not. While MLP
processing alone did not have a large effect on the overall per-
formance, the best results were obtained for MLP-processed
phase sensitive filters and added MFCCs, with relative error re-
ductions of over 40% for both noisy and clean training.
Index Terms: spectro-temporal features, automatic speech
recognition

1. Introduction
While human listeners are able to recognize speech even in very
adverse acoustic conditions, automatic speech recognizers are
much less robust in the presence of noise or channel distortions
[5, 8]. It is this observation that motivates research to apply sig-
nal processing strategies of the human auditory system to auto-
matic speech recognition (ASR). Physiological measurements
in different mammal species have shown the existence of neu-
rons in the primary auditory cortex (A1), which are sensitive to
different patterns in the spectro-temporal representation of the
signal [6]. The spectro-temporal receptive field (STRF) is an
estimate of the stimulus that elicits a high firing rate in isolated
neurons. A high percentage of STRFs exhibit patterns that span
durations of 200 ms, which exceeds the time intervals consid-
ered by traditional ASR features. Furthermore, individual neu-
rons were found to be sensitive to specific spectral and temporal
modulation frequencies.

In physiological studies, two-dimensional Gabor functions
have been successfully applied to modeling STRFs [10], which
motivated the use of Gabor features as a front-end for ASR.
Kleinschmidt and Gelbart [4] used a set of complex 2D Ga-
bor functions for processing spectro-temporal representations
of speech and found considerable improvements for ASR, es-
pecially for mismatched training and testing (i.e., using clean
training data and noisy test utterances). This approach was also
shown to be more robust against certain intrinsic variations of
speech compared to standard features, such as changes in speak-

ing rate [9]. In [4] and [9], filters were selected with the Fea-
ture Finding Neural Network that uses a simple classifier and
a substitution rule which iteratively replaces the least relevant
feature from a randomly drawn set. Filters were chosen from
a feature space spanned by temporal and spectral modulation
frequencies, the frequency channel, and the phase component
of the feature (which is realized by selecting the imaginary, real
part, or the magnitude of the complex filter result as shown for
a 1D example in Fig. 1). The optimized set was used as in-
put to a Tandem recognition system, which combines a multi-
layer perceptron (MLP) and a Hidden Markov model (HMM)
as back end [2]. A challenge often encountered in feature se-
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Figure 1: Real and imaginary part of a 1-dim. Gabor function.
While the zero phase of the real component preserves the loca-
tion of matched patterns in the filter output, the imaginary com-
ponent can serve as an edge detector for the signal analyzed.

lection is that this approach may result in feature sets that are
optimized for a specific task, while the dynamic weighting of
a large number of spectro-temporal features might be more ap-
propriate when a feature set is to be used in different acous-
tic backgrounds. In [11], a multitude of filters (> 10k) was
used to extract spectro-temporal modulation features that are
organized in streams; these streams were processed with multi-
layer perceptrons (MLPs), and individual streams were merged
and combined with standard features. In another approach, a
Gabor filter bank was used to extract spectro-temporal features
that were reported to improve an MFCC baseline [1] when the
real-valued filter output was used as direct input for an HMM
classifier [12]. These studies share the idea of using using lo-
calized filters tuned to specific spectro-temporal pattern (e.g.,
vowel transients or changes of the fundamental frequency as



shown in the example in Fig. 2), thereby increasing the overall
robustness of an ASR system. However, the studies also dif-
fer with respect to the design of spectro-temporal filters, and
it is unclear how these affect the overall performance obtained
from the derived feature sets. One of the design choices is the
relevance of phase information, which was subject to the fea-
ture selection process in [4], whereas other works use a fixed
phase for all filters ([11], [12]). A second aspect is the non-
linear weighting of features, which was applied in [4] and [11],
while in another case the Gabor features were used to directly
train and test a Hidden Markov Model [12]. Finally, a combina-
tion of Gabor and standard features was proposed in [11], which
improved a competitive baseline system for a digit recognition
task.

This work presents a series of experiments in which these
different design choices are investigated (cf. Fig. 3). The
starting point for ASR tests is a filter bank proposed in [12]
that evenly covers the modulation frequency domain, which
avoids the problem of selecting filters for a specific recogni-
tion task. We analyze the importance of phase sensitivity of
spectro-temporal filters by using the imaginary or real part or
the magnitude of the filter output. The results are compared
to non-linearly weighted feature streams that are calculated us-
ing MLPs. The MLPs produce phone posterior probabilities,
which are combined with mel-frequency cepstral coefficients
(MFCCs) in a final set of experiments.
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Figure 2: Spectrogram of the utterance ”Run Forrest, run”,
which exhibits spectro-temporal modulations that arise from
vowel transients and variations of the fundamental frequency.

2. Methods
2.1. Gabor features

Gabor features are calculated by processing a spectro-temporal
representation of the input signal by a number of 2D modulation
filters. Filtering is performed by calculating the 2D convolution
of the filter and a log mel spectrogram; the latter was chosen
because it incorporates several properties of the auditory system
(i.e., non-linear frequency scaling and logarithmic compression
of amplitude values).

Gabor filters are defined as the product of a complex si-
nusoidal function s(n, k) (with n and k denoting the time and
frequency index, respectively) and an Gaussian envelope func-
tion. In this work, the Gaussian envelope is replaced by the
Hann function h(n, k), which was reported earlier to slightly
improve results for ASR [7] due to improved filter characteris-
tics compared to a Gaussian envelope with limited extent. In
this notation, the complex sinusoid is defined as

s(n, k) = exp [iωn(n− n0) + iωk(k − k0)] .
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Figure 3: Diagram of processing steps for ASR with complex
spectro-temporal features. This paper analyzes the effect of
choosing filters with different phase sensitivity (A), non-linear
weighting of features (B), and combination with standard fea-
tures (C).

and the Hann envelope is given by

h(n, k) = 0.5− 0.5·cos
(
2π(n− n0)

Wn + 1

)
·cos

(
2π(k − k0)

Wk + 1

)
.

and the sinusoidal function s(n, k) with the window lengths
Wn and Wk.

The periodicity of the carrier function is defined by the ra-
dian frequencies ωk and ωn, which allow the Gabor function
to be tuned to particular directions of spectro-temporal mod-
ulation, including diagonal modulations. For purely temporal
or spectral filters, this definition results in an infinite support
function; in these cases, the support is limited to 69 frequency
channels or 99 time frames, which corresponds to the maximum
size of the other filters in the respective dimension.

2.2. Gabor filter bank

Experiments presented in this paper are based on a spectro-
temporal filter bank proposed in [12]. The filter bank contains a
set of temporal, spectral and spectro-temporal filters that were
chosen to cover a wide range of modulation frequencies. The
specific modulation frequencies were chosen so that the transfer
functions of the filters exhibit a constant overlap in the modu-
lation frequency domain; these frequencies and center frequen-
cies of the mel spectrograms are listed in Table 1. While the
lowest temporal modulation frequency employed in [12] was
6 Hz, we use a modified version in which the lowest modu-
lation frequency is 2 Hz, which was included to cover modu-
lations arising from the syllable structure in spoken language.
This parametrization results in 59 pairs of spectral and tempo-
ral modulation frequencies; the resulting filters are depicted in
Fig. 4.

With 59 spectro-temporal filters and 23 frequency channels,
the resulting feature vectors have 1357 components, which is



Temp. mod [Hz] 0, 1.9, 3.9, 6.2, 9.9, 15.7, 25
Spec. mod. 
[cycl./oct.]

-0.25, -0.1224, -0.06, -0.0293, 
0, 0.0293, 0.06, 0.1224, 0.25

Center freq.
[Hz]

124, 189, 260, 336, 417, 506, 601, 
704, 814, 934, 1063, 1202, 1352, 

1515, 1689, 1878, 2082, 2302, 
2539, 2794, 3070, 3368, 3689,
 4036, 4410, 4814, 5249, 5719, 

6226, 6773, 7363

Table 1: Temporal and spectral modulation frequencies used for
the filter bank and center frequencies of the mel spectrograms
used as spectro-temporal representation for feature calculation.
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Figure 4: Real components of Gabor filters used for the filter
bank, arranged by temporal and spectral modulation frequen-
cies.

too high-dimensional to be used with the Aurora2 HMM. How-
ever, since filters with a large spectral extent result in relatively
small changes in the feature values when shifted by one fre-
quency channel, the redundancy of the filter output can be re-
duced by selection of specific feature channels. Hence, for each
modulation filter, the center frequency channel (corresponding
to a frequency of 1 kHz) is selected; additionally, the channels
are included in the final vector for which the overlap of neigh-
boring Gabor filters is 3/4. With this critical sampling, the num-
ber of selected channels lies between 1 (for ωk = 0 cycl./oct.)
or 23 (ωk = ± 0.25 cycl./oct.), and the feature dimension is re-
duced to 449.

2.3. Classifier and baseline

The performance of different realizations of Gabor features is
tested within the Aurora2 framework [3], which provides both
speech data as well as specifications for the HMM classifier.
Aurora2 defines two training conditions that use either clean
connected digits or a mixture of noisy and clean data (multi-
condition) for training. Testing is performed with clean and

noisy data, with a mixture of various noisy types: Subway, bab-
ble, car, exhibition (which are also used during multi-condition
training), restaurant, street, airport, and station. The average
word error rates (WERs) reported for this task are obtained by
averaging the WERs of the test data with SNRs from 0 dB to
20 dB. Additionally, the relative improvements in WER over
the baseline system are presented. These were obtained using
MFCCs with delta and acceleration coefficients as input fea-
tures. The HMM was configured according to [3]: The setup
uses whole-word HMMs with 16 states and with a 3-Gaussian
mixture with diagonal covariances per state. Skips over states
are not permitted in this model.

For experiments that employ non-linear weighting of fea-
tures, the MLP training was carried out with phonetically la-
beled digit sequences from the Aurora2 database. The phoneme
labels were obtained from forced alignment. The MLP used 9
frames of temporal context which resulted in 9 × 449 = 4041
input units. 160 and 56 units were used for the hidden and
output layer, respectively. The log-posteriors were decorre-
lated with a principal component analysis, in order to match
the orthogonality assumption of the HMM decoder. Mean and
variance were normalized for each utterance before training
and testing the back end. For the last set of experiments, 13-
dimensional MFCC features with delta and acceleration coeffi-
cients were appended to the MLP-transformed Gabor features,
resulting in 71-dimensional feature vectors.

3. Results
The results of the ASR experiments are presented in Table 2. All
implementations of Gabor features decreased the baseline error
rate for both training conditions except for the case when fil-
ters that are insensitive to the phase were used as direct input to
an HMM back end. When using MLP-weighted features, error
rates went slightly up in three out of six cases. For the magni-
tude filter output however, error rates were lowered by 8% and
20% absolute compared to Gabor features without non-linear
weighting. With MLP processing, the large differences between
real, imaginary part and magnitude were not observed. Errors
were further reduced when the phone posteriors from the MLP
were concatenated with MFCCs, with error rates of 25.2% and
8.0% for real-valued phase-sensitive filters. For consistency,
relative improvements were calculated from the WERs in this
table. When the measure proposed in [3] is used (which takes
the each individual WER for the noise types and SNRs into ac-
count), identical trends are observed with the exception of ’Ga-
bor+MLP+MFCC (imag)’, which resulted in a higher relative
improvement (55%) compared to ’Gabor+MLP+MFCC (real)’
(49%).

4. Discussion and summary
The ASR results show that phase information is an important
design aspect when spectro-temporal features are used as di-
rect input to an HMM classifier. For the filter bank used in
this work, the use of phase-sensitive filters outperformed using
the magnitude by 8.8% and 16% absolute for clean and multi-
condition training, respectively. While the imaginary compo-
nent might be able to serve as edge detector in the spectro-
temporal domain, the real component is designed to capture
spectro-temporal modulations in any possible direction - in-
cluding simple temporal or spectral modulations. Since it is
sensitive to the phase, it is a good estimate for the temporal
and spectral location of events. The enhanced localization with



Clean Multi Clean Multi

MFCC Baseline 42.7 15.6 0.0 0.0
Gabor (Real) 30.5 11.2 28.6 28.2
Gabor (Imag) 36.0 11.7 15.7 25.0
Gabor (Mag) 52.8 20.0 -23.7 -28.2
+MLP (Real) 30.7 12.6 28.1 19.0
+MLP (Imag) 31.4 13.2 26.5 15.6
+MLP (Mag) 32.6 12.0 23.7 23.4
+MLP+MFCC (Real) 25.2 8.0 41.1 48.4
+MLP+MFCC (Imag) 27.2 8.2 36.3 47.5
+MLP+MFCC (Mag) 30.7 8.3 28.1 47.0

Absolute 
WER

Rel. imp. in 
WER

Table 2: ASR word error rates (WER) and relative improve-
ment of WER for different implementations of Gabor features.
’Clean’ and ’Multi’ refer to the training conditions for Aurora2
digit recognition task.

real-valued filters in comparison to other variations of Gabor
features in depicted in Fig. 5. In this figure, filters with tempo-
ral modulations below 6 Hz were selected, for which the dislo-
cation of energy is clearly visible for the imaginary component
and the magnitude. This result suggests spending more atten-
tion to the phase component of spectro-temporal filters in future
experiments. It is likely that information from streams that ex-
hibit different phase sensitivity is complementary, which could
be exploited by merging these streams with neural networks. In
this scenario, the addition of a free phase parameter may also be
considered (in contrast to using filters with a phase of 0 or π/2
as in this study).

The large differences between real, imaginary part and the
magnitude were strongly decreased when Gabor features were
nonlinearly transformed with an MLP (or in one case even in-
verted, cf. Table 2). It might be that the temporal context used
for the MLP to some extent counteracts the dislocation of en-
ergy. The addition of MFCCs features lowered the WER by
4.2% on average, which is consistent with other studies [11].
This result also suggests that the error rates for Gabor features in
combination with MLPs or other techniques for feature weight-
ing might be further decreased since the filter bank generating
the feature also include purely spectral filters, which resemble
the processing performed by MFCCs.
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Figure 5: Mel spectrogram of the utterance five (a). Gabor filter
bank features for real-valued or imaginary filter output (b and
c) and for the magnitude of the filter result (d).
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