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Abstract
In this study, the effect of speech-intrinsic variabilities such as
speaking rate, effort and speaking style on automatic speech
recognition (ASR) is investigated. We analyze the influence
of such variabilities as well as extrinsic factors (i.e., additive
noise) on the most common features in ASR (mel-frequency
cepstral coefficients and perceptual linear prediction features)
and spectro-temporal Gabor features. MFCCs performed best
for clean speech, whereas Gabors were found to be the most ro-
bust feature in extrinsic variabilities. Intrinsic variations were
found to have a strong impact on error rates. While performance
with MFCCs and PLPs was degraded in much the same way,
Gabor features exhibit a different sensivity towards these vari-
abilities and are, e.g., well-suited to recognize speech with vary-
ing pitch. The results suggest that spectro-temporal and classic
features carry complementary information, which could be ex-
ploited in feature-stream experiments.
Index Terms: automatic speech recognition, speech-intrinsic
variabilities, feature extraction, spectro-temporal features

1. Introduction
Human listeners outperform automatic speech recognition
(ASR) systems not only in acoustically challenging situations
(e.g., in the presence of noise or competing talkers), but also
when clean speech is to be recognized. Intrinsic factors such as
gender, speaking rate and style, dialect, accent, and vocal effort
contribute to the vast variability and aggravate finding auditory
models that adequately model spoken language. Our work is
motivated by the idea to narrow the gap between human and
automatic speech recognition by learning from the principles in
the human auditory system.

In this study, we used a speech database with speech-
intrinsic variabilities to study the effect of speaking rate, ef-
fort and speaking style on ASR performance. This corpus was
introduced as a tool for man-machine-comparison in speech
recognition and contains short non-sense utterances, which
avoids high-lexical influence. A hidden Markov model clas-
sifier was combined with three different feature types, namely
mel-frequency cepstral coefficients (MFCCs), perceptual linear
prediction features (PLPs) and Gabor features. MFCCs [1] and
PLPs [2] are the most common feature types in ASR and have
been compared regarding their robustness towards noise earlier
[3]. PLPs were often found to give small improvements over
MFCCs, especially in noisy environments or when training and
test conditions were not well-matched. However, their robust-
ness against the above-mentioned intrinsic parameters has not
been studied so far. Gabor features are physiologically moti-
vated features, and are based on Gabor filters which are a simple
model of the spectro-temporal receptive fields in the primary

auditory cortex [4]. It was investigated if the explicit use of
spectro-temporal information helps to increase overall robust-
ness against extrinsic and intrinsic factors.

2. Speech database
The Oldenburg Logatome corpus (OLLO) [5] was used
to analyze the influence of variabilities on ASR perfor-
mance. It consists of non-sense utterances (i.e., combina-
tions of vowel-consonant-vowel (VCV) and consonant-vowel-
consonant (CVC) with the outer phonemes being identical) spo-
ken with different speaking rates and efforts. The database has
been used before for studies on the effect of dialect both on hu-
man and automatic speech recognition and is freely available
for research purposes at http://sirius.physik.uni-oldenburg.de.
OLLO contains 14 central consonants (/p/, /t/, /k/, /b/,
/d/, /g/, /s/, /f/, /v/, /n/, /m/, /S/, /ţ/, /l/) and ten
central vowels (/a/, /a:/, /E/, /e/, /I/, /i/, /O/, /o/, /U/,
/u/).

40 German speakers from four dialect regions and ten
speakers with a French accent were recorded for the database.
This study focuses on effects induced by different speaking ef-
forts and rates. Hence, only speech from non-dialect speakers
(originating from the north-western part of Germany) was used
for the ASR experiments (cf. Section 3.3.1).

2.1. Speech-intrinsic variabilities

The choice of variabilities for the corpus was based on ASR
experiments with annotated test corpora that compared the per-
formance of automatic recognizers in the presence or absence
of these variabilities. The largest impact on performance was
observed for varying speaking rate, speaking style, speaking ef-
fort, and dialect/accent. Each logatome was recorded in nor-
mal (or neutral) speaking style as a reference. In addition, each
of the five selected variabilities (i.e., fast and slow speaking
rate, loud and soft speaking style, and question which refers
to rising pitch) was recorded. To provide a broad test and train-
ing basis for ASR experiments and to allow for an analysis of
intra-individual differences, each logatome was recorded three
times which resulted in 150× (5+1)× 3 = 2,700 logatomes per
speaker.

3. Feature types
3.1. Cepstral coefficients and perceptual linear prediction
features

MFCCs [1] and PLPs [2] are the most common methods in fea-
ture extraction; both encode the smoothed short-time Fourier
transform (STFT) magnitude, which is typically computed ev-
ery 10ms using an overlapping analysis window of 25ms. For
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the computation of MFCCs, a pre-emphasis is applied to the sig-
nal before calculating the STFT. Each frame is then processed
by a mel-filterbank (which approximates the response of the hu-
man ear), compressed with the logarithm and transformed to
cepstral parameters using an inverse discrete cosine transfor-
mation. By selecting several (typically 12 or 13) lower cepstral
coefficients, only the coarse spectral structure is retained. This
processing results in mostly decorrelated features. PLP features
incorporate further psychoacoustic constraints: Linear predic-
tion coefficients are computed from a perceptually weighted
nonlinearly compressed power spectrum. The power spectrum
is obtained with a Bark filterbank with a subsequent equal-
loudness pre-emphasis and a compression based on Steven’s
power law (i.e., values are compressed by cube-root). The lin-
ear prediction coefficients are then transformed to cepstral coef-
ficients. In summing up, MFCCs and PLPs are similar in many
aspects, but their differences (e.g., mel- vs. Bark-scaling of the
filterbank, compression based on the logarithm vs. Steven’s law,
differerent pre-emphasis schemes) were found to yield differ-
ent levels of robustness: MFCCs have been reported to perform
very well for recognition of clean utterances or when there is
no significant mismatch between training and test noise, while
PLPs are often preferred when training and test do not match.

For the presented experiments, both feature types were cal-
culated using the rastamat Matlab toolbox [6] with parameters
that resemble feature extraction from the HTK software [7], i.e.
the filter bank used 20 frequency channels; the 13-dimensional
features were concatenated with delta and acceleration coeffi-
cients. Signals with 16kHz bandwidth were used as input to the
front-ends.

3.2. Spectro-temporal Gabor features

Gabor features are motivated by physiological measurements in
the primary auditory cortex (A1) of several mammal species.
Spectro-temporal Gabor filters, which serve as a simple model
of spectro-temporal receptive fields of neurons in A1, were pro-
posed for feature extraction in ASR by Kleinschmidt and Gel-
bart and have been shown to increase the robustness towards
extrinsic variabilities [4]. The advantage over the MFCC base-
line was most striking for mismatched training and test SNRs
and noise signals. However, in this study we focus on the ro-
bustness against intrinsic variations and use a paradigm with
matched training and test conditions.

The features were calculated by processing a spectro-
temporal representation of the input signal by a number of 2-
D modulation filters, as depicted in Fig. 1. The filtering was
carried out by performing a 2-D correlation of the input repre-
sentation with each filter function and a subsequent selection of
the desired frequency channel of the output. This yielded one
output value per frame and filter. Log mel-spectrograms served
as input for the filter process.

The two-dimensional complex Gabor function G(n, k) is
defined as the product of a Gaussian envelope g(t, f) and the
complex sinusoidal function s(t, f). We substituted the Gaus-
sian with a Hanning envelope h(t, f), which resulted in im-
proved results on a digit recognition task [8]. The envelope
width is defined by the window lengths Wt and Wf , while the
periodicity is defined by the radian frequencies ωt and ωf with t
and f denoting the time and frequency index, respectively. The
two independent parameters ωt and ωt allow the Gabor function
to be tuned to particular directions of spectro-temporal modu-
lation, including diagonal modulations. A further parameters is
the center of mass of the envelope in frequency f0.

The window length was chosen depending on the modula-
tion frequency ωx, respective the corresponding period Tx, ei-
ther with a fixed ratio νx = Tx/2σx = 1 to obtain a 2D wavelet
prototype or by allowing a certain range νx = 1..3 with indi-
vidual values for Tx being optimized in the automatic feature
selection process. From the complex results of the filter op-
eration, real-valued features were obtained by using the real,
imaginary or absolute part only. Special cases are temporal fil-
ters (ωk = 0) and spectral filters (ωn = 0). In these cases, Wx

replaces ωx = 0 as a free parameter, denoting the extent of the
filter, perpendicular to its direction of modulation.

A suitable set of Gabor filters was determined with the Fea-
ture Finding Neural Network (FFNN), which is a search algo-
rithm based on a linear neural net. Random filters with phys-
iologically motivated parameteter constraints are employed to
calculate features, which are subsequently used to train and test
the speech recognition performance of the linear classifier. The
relevance of each filter is determined by discarding the corre-
sponding feature component from the feature vector, and calcu-
lating the increase of error rate without this feature being used.
The least relevant filter is replaced by a randomly drawn new
one. This process is repeated until the maximum number of iter-
ations is reached. The filter set used in this study has been opti-
mized using a German database containing noisy digits (Zifkom
database). Since the optimization was carried out on data sam-
pled at 8kHz, utterances from the OLLO corpus were resampled
to 8kHz bandwidth when used as input for the Gabor front-end.
For details on the FFNN algorithm, the reader is referred to [8].

In earlier studies, a large increase in recognition accuracy
was obtained by using a Tandem recognizer, i.e., the transfor-
mation of features with a non-linear neural network (or multi-
layer perceptron (MLP)). The resulting posteriors were decorre-
lated using a principal component analysis (PCA), and fed to a
hidden Markov model [9]. In this work, we test two variants of
Gabor features, namely the original 80-dimensional filter output
without delta features and the filter result processed by a Tan-
dem system, as shown in Fig. 1, which yields 56-dimensional
feature vectors. The training and forward run of the neural net
are carried out as described in [8].

3.3. Classification system

3.3.1. Training and test set

Utterances of the OLLO database (cf. Section 2) from three
male and three female talkers without dialect (∼17k speech
items) served as training data, logatomes from the four remain-
ing speakers (speaker indices {1,2,6,8}, ∼11k utterances) were
used for the test, with speech-intrinsic variations being equally
distributed in both sets. The chosen segmentation of the corpus
results in a speaker- and gender-independent ASR system.

To study the effect of noise on the different feature extrac-
tion schemes and on changes in speaking rate and effort, a sta-
tionary, speech-shaped noise was used. Noise was added at
SNRs ranging from -10 to 10dB in 5dB-steps, and the noisy
speech data was subsequently used to train and test the back-
end, with identical train and test SNR. The SNR was calculated
by relating the root-mean-square (rms) value of the speech seg-
ments of each audio signal and the rms value of the masking
noise of equal length. A simple voice detection algorithm based
on an energy criterion was used to extract connected speech seg-
ments. Additionally, the classifier was trained and tested with
clean speech.
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Figure 1: Gabor features are calculated by correlation of each filter with a mel-spectrogram and subsequent selection of the center
frequency fc associated with each filter. This results in 80-dimensional vectors that are used to train and test a Tandem recognizer,
which consists of a neural net and an HMM. Gabor functions on the left are examples of purely temporal, spectral and spectro-temporal
filters. The cross-correlation in this example was obtained with a spectro-temporal filter that emphasizes the diagonal transient.

3.3.2. Classification system

ASR experiments were carried out with a Hidden Markov
Model (HMM) with three states and eight Gaussian mixtures
per state. Logatomes with the same outer phoneme were used
to train and test HMMs which were subsequently used to clas-
sify the central phoneme in CVCs and VCVs, i.e., confusion
occured only between central phonemes. The HTK classifier
was used for the experiments [7].

4. Results and discussion
4.1. Overall results

Phoneme recognition rates for the different feature types are
presented in Fig. 2. MFCCs result in the lowest error rates
for the relatively easy task of recognizing clean speech with a
clean-trained recognizer. At SNRs below 0dB, PLPs perform
better than MFCCs. The differences between PLPs and MFCCs
show a slightly higher robustness of PLPs for this task, support-
ing the results in [3]. Gabor features delivered better average
performance when being used with a Tandem recognizer (which
includes a PCA as final processing stage), compared to directly
using them as input for the HMM. A reason for this might be
the correlation of Gabor feature components, which is a dis-
advantage when using diagonal covariance matrices in HMMs,
as it has been done here. Spectro-temporal features produce
higher error rates than MFCCs and PLPs in clean speech, but at
5 and 10dB SNR, Gabor-MLP features are on par with MFCCs,
and perform better below 5dB SNR (with relative reductions in
word error rate up to 17% compared to MFCCs).

4.2. Speech-intrinsic variabilities

ASR phoneme error rates depending on speech intrinsic varia-
tions are shown in Fig. 3 for three feature types. Original Gabor
features produced scores between PLP and Gabor-MLP and are
not shown in the figure. Intrinsic variations induce large dif-
ferences in performance. On average, the reference condition
and slow speaking rate result in rather low error rates, while the
conditions ’fast’ and ’soft’ yield an increase of errors. As an
example, MFCCs errors increase by over 10% for fast spoken
utterances compared to the category ’normal’. Similar differ-
ences are observed for the other features. However, MFCCs
and PLPs seem to be similarly affected by the intrinsic varia-
tions: Throughout all variabilities, MFCCs perform better than
PLPs for the 5dB-SNR task, and the average results are quite
similar. We conclude that the differences between feature ex-
traction schemes for MFCCs and PLPs do not influence their
sensivity towards these intrinsic variabilities. Gabor-MLP fea-
tures show the best average performance throughout all variabil-
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Figure 2: Overall error rates for different feature extraction
schemes. Results were obtained by training and testing the ASR
system with the same signal-to-noise ratio.
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Figure 3: ASR phoneme errors for different feature types, de-
pending on speaking style, rate and effort. Scores were obtained
by training and testing the recognizer with logatomes at 5dB
SNR (light bars) which resulted in similar overall performance
for MFCC and Gabor-MLP features. Errors averaged over all
SNRs from -10dB to 10dB and clean speech are depicted by
darker bars.
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ities, with the exception of fast speaking style. This condition
also shows relatively weak performance for the 5dB-SNR task.
On the other hand, low error rates are obtained for the condi-
tion ’question’. Thus, the usage of spectro-temporal features is
not only beneficial for overall performance, but also results in
different sensivity towards several intrinsic variations. The rea-
son for the high error rates for fast spoken utterances might be
that the optimization of the filter set was carried out on German
digits that were spoken at normal speaking rate. Higher spectro-
temporal modulation frequencies, which might be better suited
to detect, e.g., formant transitions of speech at high speaking
rate, may therefore not be included in the filter set.

4.3. Information transmission

The acoustic cues important for consonant identification are an-
alyzed by decomposing phonemes into their linguistic or artic-
ulatory features (AFs). This method of data analysis is based
on works by Miller and Nicely [10] who proposed several AFs
to group speech stimuli. The amount of transmitted informa-
tion (TI) associated with each feature is calculated based on the
confusions of these features.

Fig. 4 shows the normalized transmitted information for
consonant and vowel phonemes, as well as for several articu-
latory features. MFCCs exhibit very good performance for the
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Figure 4: Transmitted information based on consonant and
vowel confusion matrices, and for the articulatory features man-
ner, place and voicing (derived from consonant confusions) and
height and backness (based on vowel confusions). As in Fig. 3,
the lighter bars denote results obtained with training and test at
5dB SNR, while darker bars show results averaged over all SNR
conditions.

overall classification of consonants and for the consonant fea-
tures place and manner, while Gabor-MLPs show the highest
TI scores for the voicing feature. The reduced performance of
MFCCs and PLPs for voicing presumably arises from the spec-
tral smoothing and elimination of fine structure. Gabor-MLPs
perform best for the recognition of vowels and vowel-associated
articulatory features. In previous studies, Gabor features have
been shown to carry complementary information compared to
MFCCs [8]. The observed differences in Figs. 3 and 4 indicate
that this complementarity also applies to intrinsic variations and
articulatory features, which motivates further experiments that
combine properties of spectro-temporal features with MFCCs
and PLPs.

5. Conclusions
In this work, we analyzed the properties of different ASR fea-
tures towards extrinsic and intrinsic variabilities. MFCCs were
found to produce best results in acoustically optimal conditions
with matched train-test conditions, while PLPs are better-suited
for phoneme recognition below 0dB SNR than MFCCs. Error
rates obtained with Gabor features at low SNRs were 17% lower
than with MFCCs, which documents the robustness towards ex-
trinsic factors.

Intrinsic variations (speaking rate, style and effort) had a
strong impact on ASR performance. However, MFCCs and
PLPs seem to be equally affected by these variations. On
the other hand, our analysis showed that Gabor features dif-
fer from MFCCs and PLPs regarding sensivity towards intrin-
sic parameters, since utterances spoken as question produced
relatively low error rates, while fast spoken utterances were
better recognized with MFCCs. The analysis based on trans-
mitted information showed that voicing and vowel-associated
features are better encoded by Gabor features, whereas the
highest TI scores for place and manner of articulation were
found for MFCCs. We therefore argue that Gabor features and
MFCCs/PLPs carry complementary information, which could
be exploited in feature-stream experiments.
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