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ABSTRACT

The problem of blind separation of a convolutive mixture of
speech signals is considered. Signal separation is performed
in the frequency domain.

Based on observations from amplitude spectrograms of
speech signals, the notion of amplitude modulation corre-
lation (‘AMCor’) across different frequency channels is in-
troduced. From the corresponding principle of amplitude
modulation decorrelation, a novel cost—function and an al-
gorithm for convolutive blind source separation are derived.
The algorithms’ main features are discussed. Successful sep-
aration of synthetic data and of real-room recordings of
speech is performed. The results of the latter are compared
to the performance of previous algorithms on the same data.

Audio examples are available from the authors’ web

page [2].

1. INTRODUCTION

The convolutive blind source separation problem is encoun-
tered in the field of acoustics when superpositions of M
source signals are recorded by /N microphones in a rever-
berant environment. The aim is to reconstruct the source
signals from knowledge of the microphone signals only. The
location of sources and microphones is assumed to be un-
known which gives rise to the term ‘blind’.

Since sound propagation in air is linear and involves
time—delays and echoes, the recorded signals zi (t),...,
zu (t) are obtained as the sum of convolutions of the source
signals s1 (t),..., s~ (t) and the room’s impulse response:

mi(t)=zzaij(T)sj(t—T)- (1)

By ai; (1) we denote the impulse response from source j to
the location of the i—th microphone. We consider the case of
non—degenerate source separation, i.e., when the number of
microphones IV is larger or equal to the number of sources
M. In this case, unmixing of the microphone signals by
linear filtering is feasible.

Filtering is performed in the frequency domain by first
computing spectrograms of the mixed signals. Subsequently,
the signals are unmixed in the frequency domain by ma-
trix multiplication. Finally, the unmixed spectrograms are
transformed back to the time—domain using the overlap—
add method [10]. (See sections 2.1 and 3 for details.)

Our algorithm differs from previous algorithms by the
fact that it does not try to unmix the data in each frequency
channel by evaluating the mixed signals at each frequency
in question independently. Rather, it integrates informa-
tion across different frequencies to unmix the signals. The
basis for the algorithm is the property of amplitude modula-
tion correlation (‘AMCor’) which can be observed in, e.g.,
speech. It states that the the signal amplitude in different
frequency bands undergoes interrelated changes (see sec-
tions 2.3 and 2.4). By applying the principle of amplitude
modulation decorrelation (‘AMDecor’) on the unmixed sig-
nals, it is possible to separate the data (see section 4).

A problem of source separation in the frequency do-
main are local permutations of the unmixed signals across
frequency channels. They can be solved using additional
constraints about the source signals [9], the room’s impulse
response [12, 4], or by exploiting properties of the discrete
Fourier transform [14]. To this end, the amplitude modu-
lation decorrelation algorithm comprises the inherent prop-
erty that it penalizes and therefore avoids local permuta-
tions (see section 4).

Notation throughout the paper is as follows: vectors
and matrices are printed in bold font; %, (t) denotes the
spectrogram of quantity x; frequencies are indexed by o and
B3; the total number of frequency channels is denoted by A;
the expectation operator is denoted by E {-}; transposition
of vector x is denoted by x”.

2. AMPLITUDE MODULATION
CORRELATION

In this section we briefly review the spectrogram and the
amplitude spectrogram. Motivated by observations from
speech signals we introduce the notion of amplitude modu-
lation correlation.

2.1. The Spectrogram

The spectrogram is a standard time—frequency representa-
tion used for the analysis and filtering of speech signals [10].
It incorporates spectra of short, typically 40msec long, over-
lapping frames of the signal. A windowing function w (t) is
applied prior to spectral analysis in order to enhance spec-
tral resolution and avoid circular aliasing. The short-time



spectrum £ (o) corresponding to signal z (t) is defined as

Ga (o) = Ig 2 (o + ) w (k) exp (-%M) .

Time to denotes the start of the frame, and o denotes the
frequency channel. Since the complex valued spectrogram
allows for transformation back to the time domain, e.g., by
the overlap—add method [10], it is frequently used for digital
filtering.

2.2. The Amplitude Spectrogram

By preserving only the spectrogram’s amplitude and dis-
carding the phase-information, the amplitude spectrogram
|Za (to)| is obtained, where |-| denotes the magnitude of
a complex number. The amplitude spectrogram is highly
useful for visualization and analysis of speech signals, and
it reveals the rich semi-deterministic structure present in
speech. However, since phase information is lost, the am-
plitude spectrogram does not allow for time domain recon-
struction of the underlying signal.

2.3. Structure in Speech

Fig. 1 displays the amplitude spectrogram of a speech sam-
ple. Note that many elements of this image change smoothly
over both time and — more important for our purpose —
frequency, and that even distant frequency channels exhibit
related changes in amplitude.

The most prominent feature of speech is the amplitude
modulation due to the succession of different phonemes as
constituents of speech. It results in quasi—periodic, broad-
band maxima and minima at a modulation frequency of typ-
ically four Hertz. Another feature of speech are the spectral
maxima and minima of the glottis excitation; they manifest
themselves in the amplitude spectrogram’s horizontal lines.
The glottis is the main energy source for speech produc-
tion and emits a broadband sound with spectral peaks at
the harmonics of the speaker’s pitch frequency. In the next
stage of speech production, this broadband sound is filtered
by the vocal tract which embosses the spectral shape of the
phoneme in question on it. The vocal tract is a smooth
physical system with, in practice, a limited number of de-
grees of freedom, and its transfer function is a smooth func-
tion with a relatively low number of spectral maxima and
minima. Most prominent among the spectral peaks are the
formants which are regarded as the characteristic elements
of vowels [13]. E.g., the vowel [e] is characterized by simul-
taneous spectral peaks at frequencies of typically 500Hz and
2000Hz.

2.4. Amplitude Modulation Correlation

From the above it should be obvious that the way hu-
man speech is produced naturally leads to a similar time
course of amplitude in different and even distant frequency
channels. Since this can also be termed interrelated am-
plitude modulation in different frequency channels, we call
this property amplitude modulation correlation [3].
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Figure 1: Amplitude spectrogram of a speech signal. From
the graph it is visible that changes in amplitude in different
frequency channels are not independent but interrelated,
hence the term amplitude modulation correlation.

In order to quantify amplitude modulation correlation
across two frequency channels a and 3, we regard the am-
plitudes |Zq (t)| and |&g ()|, respectively, as two time series
and compute their covariance. This results in the amplitude
modulation correlation (‘AMCor’) which is defined as

c(ia,2p) = E{&1),& 1)},
La(t) = |&a () - E{lEa ()]},
§ (1) = s () —E{l2s (DI}

If we compute the AMCor for each pair of frequencies (o, 3)
of a single signal, we obtain the AMCor matrix C** = [c55]
whose (o, f)—element is given by c5% = ¢ (2o, £p)-

A typical AMCor matrix is displayed in Fig. 2. As ex-
pected, particularly high values of AMCor are reached for
nearby frequencies (i.e., near the diagonal), and high values
of AMCor can also be found for frequencies which are quite
distant.

The crucial question for the applicability of AMCor to
blind source separation is whether the AMCor computed
across two sources vanishes. To this end, we compute the
covariance between the amplitude time series |&4 ()| at fre-
quency channel a of source z (t) and the amplitude time se-
ries |§s (t)| at frequency channel 3 of source y (¢). Perform-
ing this operation for all frequency pairs («, 3), we obtain

the amplitude modulation correlation matrix C*¥ = [cz’é]

whose elements are defined as ¢% = ¢ (Za, J5),

c(ta,s) = E{& (1),41)},
&) = |2 @) - E{lZa ()]},
&) = 198 O - E{lgs "I}

Ideally, this matrix should be identically zero if sources x (t)
and y (t) represent two different speech signals. However,
one might argue that in the case of two sentences spoken
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Figure 2: Amplitude modulation correlation (‘AMCor’)
across frequency within a single speech signal. AMCor is
present even across distant frequencies, e.g., 1000Hz and
3000Hz.

by the same speaker or in the same language, it might not
vanish due to speaker— or language—characteristics. Fig. 3
shows an example of an AMCor Matrix for two different sen-
tences spoken by the same speaker in the same language.
Clearly, the matrix is close to zero compared to the corre-
sponding AMCor matrix (Fig. 2) computed from the first
of the two sentences only. This is also reflected in the ratio
of the matrices’ squared Frobenius norm which is 24.8.

3. BLIND SOURCE SEPARATION

The convolutive blind source separation problem (Eq. 1)
can be recast in the frequency domain using the spectro-
gram. Provided that the frames for computing the short—
time spectra are sufficiently long, Eq. 1 can be approxi-
mated by a set of A equations, each describing a matrix
multiplication in a single frequency band:

%o (t) = Aoda (1),

%o (t) = [E1,0 (t),... ,@n,a (t)]" denotes the vector of the
mixed spectrograms at frequency o and time t; 84 (t) =
[81.0 (t),..., 800 (t)]" is the corresponding vector for the
source signals; the (4, j)-element é;j,o of matrix Ay = [dij,a]
denotes the value at frequency « of the room transfer func-
tion from source j to microphone 7. The goal of blind source
separation is to find a set of A matrices Wy, a=1,... A
which reconstruct the sources from knowledge of the mix-
tures only by applying the linear unmixing model to each
frequency channel:

a=1,...,A.

i, (1) = Waka (1) (2)

The unmixed signals i, (t) = [#1,a (t),... , G (t)] are
required to resemble the original signals upto a permutation
and rescaling:

G (t) = PoDado (1)
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Figure 3: Amplitude modulation correlation (‘AMCor’)
across frequency between two different speech signals which
were spoken by the same speaker. Comparing the figure to
Fig. 2 and noting the different gray-level scales, it is con-
cluded that AMCor between different signals vanishes upto
finite size artifacts.

The unknown permutation and rescaling is denoted by
the permutation matrix P, and the diagonal matrix D,
respectively, both of which can in general depend on fre-
quency «. It must be ensured that the reconstructed sig-
nals’ ordering with respect to the original signals is the same
in every frequency channel, i.e.

P=P,=Py=...=Px.

If the unknown permutations P, and Pg are different at
frequency channels a and 8, then the components of the
unmixed vectors 0, (t) and 1z (t) do not consistently cor-
respond to the components of the source vectors S, (t) and
g (t). Hence, a time—domain reconstruction of the source
signals would be impossible. We term different permuta-
tions P, and Py in different frequency channels ‘local per-
mutation’; in contrast to the ‘global permutation’ P which
is identical for all frequencies. The unknown global per-
mutation is still present after the local permutations have
been solved, however, it does not hinder time-domain re-
construction of the source signals. Hence, the freedom of
arbitrary global permutation P is fixed by assigning the
unmixed signal ;o () to the i—th source.

The freedom of arbitrary rescaling, introduced by the
diagonal matrix D, is fixed by modeling the direct paths
as unity: @i, = 1. Hence, we reconstruct the i—th unmixed
signal as the corresponding source signal’s component re-
ceived by the ¢—th microphone.

4. AMPLITUDE MODULATION
DECORRELATION TECHNIQUE FOR BLIND
SOURCE SEPARATION

Amplitude modulation decorrelation can be employed in
an elegant manner in order to solve both the blind source
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Figure 4: Synthetic source spectrogram containing am-
plitude modulation correlation across different frequencies.
Within each frequency channel, the data has the statistics
of a Gaussian i.i.d. random variable.

separation problem (Eq. 2) and the problem of local per-
mutations simultaneously. Three features of our technique
are particularly interesting:

1. Amplitude modulation decorrelation constitutes a dis-
tinct criterion for blind source separation. It allows
for separation of, e.g., synthetic source signals con-
taining data of Gaussian i.i.d. statistics within each
frequency channel and amplitude modulation corre-
lation across frequencies.

2. Local permutations are penalized by amplitude mod-
ulation decorrelation, hence, the problem of local per-
mutations is solved.

3. Since amplitude modulation decorrelation imposes a
high number (O (M?A?)) of constraints on the un-
mixed signals, it achieves a good quality of separation
for real-world data.

We now turn to a quantitative description of the ampli-
tude modulation decorrelation technique for blind source
separation. In a preprocessing step second order correla-
tions between the microphone signals are removed. It is
well-known that decorrelation is not sufficient for source
separation (see, e.g., [6]). Rather, additional constraints
on the unmixed signals are needed. The amplitude mod-
ulation decorrelation principle provides the constraint that
the amplitude modulation correlation across any two fre-
quency channels of any two different unmixed signals must
vanish:

s = c(flia, iy p) =0 Vo, B,i,j # . 3)

Hence, the amplitude modulation correlation matrix C¥ =
[cgﬁ], i # j, must be minimized which is done by mini-
mizing its squared Frobenius norm. The cost—function to
be minimized with respect to the unmixing matrices W,
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Figure 5: Amplitude modulation correlation (‘AMCor’) ma-
trix of synthetic source spectrogram. AMCor is non-zero
across different frequencies. The peak at the diagonal cor-
responds to the signal power in each frequency.

a=1,...,A, is given by

w((w) = se(@le) o

i,

= ) c(iiaig)’. (5)

i,j#i,a,8

1 ({We )
ulation correlation (‘cumulative AMCor’).

) is also referred to as cumulative amplitude mod-

Clearly, Eq. 3 constitutes a necessary condition for source
separation. While we do not give a rigorous prove under
which conditions it is also a sufficient condition, experi-
ments performed with synthetic data and speech signals
demonstrate that in practice minimization of cumulative
AMCor is indeed sufficient in order to achieve a good qual-
ity of source separation.

The cost—function (Eq. 4) has the desirable property
that it penalizes local permutations. A local permutation
between unmixed signals ¢ and j (j # ) at frequencies «
and f manifests in a correlation ¢ (ii,q, ;)" > 0 which

increases the value of H ({VAV,, }) Hence, the minimum of

H ({Wa}) corresponds to the optimal solution in which

no local permutations occur.

Minimization of Eq. 4 can be performed by gradient
based optimization methods. The gradient is given by

Wo x E {oa () % (t)} (6)

where
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Figure 6: Signal separation of synthetic signals. Local per-
mutations do not occur; they would result in a change of
sign of the signal to noise ratio (in dB) at different frequen-
cies.

0o (t) = [ra(t),...,0ma®)]",
_ e (t)
ei,a(t) = |U7,a t)llézzﬁ; u”«azu]ﬂ)sj.@(t)a
c(inarizg) = B{€ (€ O],
ot (t) = i )] = E{|i,a ()]},
&7 (t) = e () — E{las )}

H denotes transposition and complex conjugation.

The ‘natural’ [1] or ‘equivariant’ [5] gradlent oW, is
derived from Eq. 6 by multiplication with W W, from
the right, resulting in

§Wa o E{6a (1) 0l () Wa }.

We note that Eq. 4 can easily be extended to incorpo-
rate time—delayed amplitude modulation decorrelation of
the form

er (iasiiz0) = B {68 (€57 (t =)} = 0.

In practice it has proven to be beneficial to minimize
Eq. 4 with respect to W, for fixed frequency «, keeping
W constant for all different frequen(:les B # a. After
optimization of W, another frequency, o, is selected to be
optimized, while then Wy is kept constant for all different
frequencies 3 # o'.

5. EXPERIMENTS

5.1. Synthetic data

In this section we construct source spectrograms which con-
tain amplitude modulation correlation across different fre-
quency channels. Within each frequency channel, their
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Figure 7: Separation of real-room recordings of speech by
different algorithms. Left side refers to speech data recorded
by Lee [8], right side to speech data recorded by Parra [11].
The cumulative amplitude modulation correlation (‘AM-
Cor’) is shown for the amplitude modulation decorrelation
algorithm (‘A’), Lee’s algorithm (‘L’, [7], results for Lee’s
speech data only) and Parra’s algorithm (‘P’, [12]), relative
to the mixed signals (‘M’).

signal statistics is that of a Gaussian independent identi-
cally distributed (i.i.d.) random variable. Hence, amplitude
modulation correlation is the only cue which can be em-
ployed to separate mixtures of the source spectrograms. It
is shown that our algorithm successfully separates mixtures
of the source signals. Local permutations do not occur.

For each source i, ¢ = 1,... , M, we generate Gaussian
ii.d. data (i, (t) of variance one. Amplitude modulation
correlation is introduced by multiplying all ¢; « (t) for a par-
ticular source ¢ with a common modulator p; (¢) which is
independent of frequency a. The synthetic source spectro-
grams are defined as

8ia(t) = pi(t)Cial(t).

Since p; (t) is an i.i.d. random variable of uniform distri-
bution, the §;,, have Gaussian probability density function
for all 4 and . In order to remove finite size artifacts, a
non-linear transformation is applied which ensures that the
histogram for each §;,, (t) has Gaussian shape. Fig. 4 dis-
plays a resulting synthetic source spectrogram. The corre-
sponding amplitude modulation correlation matrix is shown
in Fig. 5.

Separation of this data—set is possible only by taking
into account across—{requency information; it is not sep-
arable by looking at isolated frequency channels. Since
the amplitude modulation decorrelation algorithm exploits
modulation information across different frequencies, it suc-
cessfully separates the data. The accomplished signal sepa-
ration is displayed in Fig. 6 for a mixture of two source spec-
tra with A = 20 frequencies. Signal separation is measured
by the frequency—-dependent signal to noise ratio (‘SNR’)
which is defined as the ratio of the desired signals’ power
and the interfering signals’ power contained in the unmixed
signal. The mixing matrix A, was chosen at random and
independently for each frequency. From this figure it is also
clear that local permutations do not occur, since they would



result in a change of sign of the SNR (in dB) at different
frequencies.

5.2. Speech data

We apply the algorithm to two publicly available real-room
recordings of speech signals. The quality of separation is
evaluated and compared to the quality accomplished by pre-
vious algorithms on the same data.

The signals were obtained from Lee [8] and Parra [11].
Since only the mixed signals are known, but not the source
signals, it is not possible to compute the signal to noise ratio
for the reconstructed signals. Instead, the cumulative am-
plitude modulation correlation (Eq. 4) is displayed in Fig. 7
for the mixed signals and for separation results from differ-
ent algorithms. Total energy of the signals was normalized
prior to computing the cumulative AMCor. The amplitude
modulation decorrelation algorithm (indicated in Fig. 7 by
‘A’) significantly reduces the level of cumulative AMCor rel-
ative to the mixed signals (indicated by ‘M’). It performs
better than Lee’s Algorithm (‘L’, [7]) and slightly better
than Parra’s algorithm (‘P’, [12]). Of course, the value of
cumulative AMCor in the unmixed signals is not as good a
measure of separation as the signal to noise ratio. However,
perceived quality of separation corresponds to the values
given in Fig. 7. The signals referred to can be obtained
from our web—page [2].

6. CONCLUSION

Based on the notion of amplitude modulation correlation
(‘AMCor’) in speech signals, a novel cost—function for con-
volutive blind source separation is proposed. The derived
amplitude modulation decorrelation algorithm successfully
separates synthetic data and real-room recordings of speech.
The algorithm’s main features can be summarized as fol-
lows: Synthetic spectrograms with data of Gaussian i.i.d.
statistics in each frequency channel can be separated if AM-
Cor is present across frequency channels. Local permuta-
tions of the unmixed signals are inherently prevented by
the algorithm. A large number of constraints on the un-
mixed signals results in a good separation of echoic speech
recordings.

Our discussion has focused on speech signals. However,
it is conceivable that various natural signals contain am-
plitude modulation correlation due to the physical systems
that generate them.
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