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Summary: The problem of blindly separating a convolutive mixture of modulated signals is consid-
ered. Spectrograms of the signals are computed and separation is performed in the frequency domain.
A new algorithm for blind source separation is proposed, which is based on correlated modulation in
the sources’ different frequency channels. For example, speech contains correlated modulation in dif-
ferent frequency regions. The algorithm successfully separates mixtures of modulated artificial signals
and of speech.

To appear in: Joint meeting of the Acoustical Society of America and the European Acoustics Association,
Berlin, Germany, March 14-19, 1999.

INTRODUCTION

The goal of blind source separation is to reconstruct mutually independent source signalss1(t); : : : ;
sN(t) when only mixturesm1(t); : : : ; mM(t) of them can be observed. A minimum set of assump-
tions regarding the probability density functions or the autocorrelation functions of the sources are
made in order to accomplish this. In particular, the geometry of the sensors and sources is com-
pletely unknown, hence the term ‘blind’.
The case of an instantaneous, linear, square and invertible mixing of the sources is well-understood.
Here, the mixtures are given bym (t) = [m1 (t) ; : : : ; mN (t)]T = As (t) = A [s1 (t) ; : : : ; sN (t)]T

whereA = [aij] is the invertibleN �N mixing matrix. Various algorithms, based on higher-order
statistics or time-delayed correlations, exist for finding an estimateW ofA�1 [2]. The sources can
then be reconstructed asx (t) = [x1; : : : ; xN (t)]T =Wm (t). However, it is a principle limitation
thatx (t) can resembles (t) only up to an unknown permutation and rescaling of the elements of
s (t).
The situation is more involved for the acoustic superposition of sound sources, since the room´s
impulse response gives rise to a convolutive mixing process. One may resort to the frequency
domain by approximating the linear convolution in the acoustic medium by the circular convolution
of the discrete Fourier transformation. By computing short-time spectram̂f (T ) and ŝf (T ) of
m (t) ands (t), respectively, at timesT = 0;�T; 2�T; : : :, the mixtures can be written as

m̂f (T ) = Âf ŝf (T ) ; f = 1; : : : ; �: (1)

Hence, the acoustic source separation problem is transformed into� independent instantaneous
source separation problems, one for each frequency channelf = 1; : : : ; �.
The main problem at this point stems from the aforementioned indeterminacy with respect to per-
mutation of the sources: one may find spectral components belonging to sourcei in thejth com-
ponent of the reconstructed signalsx̂� (T ) for frequency channel�, but in thekth component of
x̂� (T ) for frequency channel�, with j 6= k. Since this permutation is a-priori unknown, any
time-domain reconstruction of the sources is impossible. Algorithms have been developed which
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Figure 1: Spectrogram of speech
containing correlated modulation
in different frequency regions.
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Figure 2: Example of correla-
tion contained in a speech signal:
C(ŝi;�; ŝi;�).
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Figure 3: Spectrograms generated
in experiment I.

solve this permutation ambiguity [1, 3, 4]. They consist of a two-step architecture: The source
separation problem (Eq. (1)) is solved separately in each frequency channelf = 1; : : : ; �, and in a
second step the reconstructed signals are sorted such that the ordering with respect to the original
signals is the same in each frequency channel.

NOVEL ALGORITHM FOR BLIND SEPARATION OF MODULATED SIGNALS

In this section we present a new algorithm for the blind separation of convolutively mixed signals
which is based on correlated modulation in different frequency channels of the source signals. For
example, speech contains correlated modulation in different frequency regions. In contrast to exist-
ing algorithms, our algorithm does not use higher-order statistics or time-delayed correlations. The
algorithm reconstructs source signals with the same ordering in each frequency channel. Hence,
there is no need for a two-stage architecture.
Speech can be regarded as a stochastic signal, which is the approach usually adopted in blind
source separation algorithms. But speech does also exhibit a rich deterministic structure, which
is particularly obvious from its spectrogram representation as shown in Fig. 1. We are interested
in the strong modulations present in speech signals. These modulations in the different frequency
channels of a speech signal are highly correlated, i.e., a change in level in one frequency channel
coincides with a change in level in many other frequency channels, which can also be observed in
the spectrogram.
The origin of this lies in the production of speech: A broadband sound is emitted from the glottis
and filtered by the vocal tract. Any change in glottal excitation or in the geometry of the vocal tract
alters the spectrum of the resulting speech signal not selectively at a certain frequency but across a
wide spectral range.
We define the correlationC (ŝi;�; ŝj;�) between modulations in different frequency channels� and
� of two (generally different) signalssi (t) andsj (t) as

C(ŝi;�; ŝj;�) �

 �

jŝi;�(T )j � hjŝi;�(T )jiT
� �

jŝj;�(T )j � hjŝj;�(T )jiT
� �

T
(2)

By h�iT we denote the expectation value with respect to time andj�j denotes the norm of a complex
number. Computed from a single source,i = j, the correlationC (ŝi;�; ŝi;�) is non-zero for almost
all frequency pairs(�; �) (refer to Fig. 2). For two independent sources,i 6= j, it is clear that
C (ŝi;�; ŝj;�) = 0 for all pairs(�; �).
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Figure 4: Convergence of parame-
ter real([Ŵ�]12) with � = 1 : : : 4;
permutations do not occur.
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Figure 5: Signal-to-signal-ratio, i.e., ratio of source signal energies
(first vs. second source) present in the first (left) and the second (right)
reconstructed signal, respectively.

To obtain an optimisation algorithm, we define the cost functionE(fŴ�g):

E
�
fŴ�g

�
=

X
i;j 6=i;�;�

[C (x̂i;�; x̂j;�)]
2
; (3)

where the reconstructed signals are defined asx̂� (T ) = [x̂1;� (T ) ; : : : ; x̂N;� (T )]
T = Ŵ�m̂� (T ).

The cost function can be minimised by gradient descent. The minimum is acquired if the modula-
tion in each frequency channel� of each sourcei is decorrelated with each frequency channel�

of every different sourcej 6= i. As shown in the next section, this separates the sources. Clearly,
at the cost function’s minimum the order of the sources’ components in the reconstructed signals
x̂� (T ) is the same for every frequency channel�; any permutation would introduce correlations
which would increaseE(fŴ�g).
In practice, optimisation is improved by whitening the data and minimising Eq. (3) for whitened
data.

EXPERIMENT I: ARTIFICIAL DATA

In order to demonstrate that our algorithm uses different modulations to separate sources, we per-
formed a separation experiment with artificially generated data.
Two spectrograms with 4 frequency channels and 2000 time points were generated in the following
way. Real and imaginary part of their componentsŝi;�(T ) were chosen randomly from a Gaus-
sian distribution with zero mean and unit variance. The signals were sinusoidally modulated in
each frequency channel. The modulation frequency was(100 samples)�1 for the first signal and
(150 samples)�1 for the second signal, respectively. Modulation depth was 1 for both signals (refer
to Fig. 3).

The signals were mixed with the same mixing matrix for each frequency channel,Â =
�

1 1p�1 1

�
:

The elements of the separating matricesŴ� were initialised differently for each frequency�, with
real and imaginary part chosen randomly between�1 and1. Due to the possible permutations, the
algorithm should converge at one of the two possible solutions which, after scaling the diagonal

elements to unity, arêW� =
�

1 �1
�p�1 1

�
andŴ� =

�
1

p�1
�1 1

�
, for all �.



After 50 iterations of the algorithm, the source signals were reconstructed successfully with an
overall signal-to-signal-ratio of more than 25dB in the reconstructed signals. The algorithm con-
verged at the same of the two possible solutions in each frequency channel, i.e., no permutations
occurred (refer to Fig. 4). As expected, the algorithm failed to separate unmodulated signals.

EXPERIMENT II: SPEECH SIGNALS

By separating digital mixes and real-world recordings of speech signals, we demonstrate that the
proposed algorithm can be applied to speech.
Spectrograms of two speech signals (sampling rate: 12kHz) of 4.5s duration were computed using
a 256 samples long Hanning window, a shift of 64 samples and a DFT length of 512 samples.
They were digitally mixed using a different mixing matrix̂A� for each frequency�, composed
of randomly chosen elements with real and imaginary part between�1 and1. The separating
matricesŴ� were initialised with the unit-matrix for each frequency�. Expectation values in
Eq. (2) were computed as the signals’ means.
The algorithm reconstructed the source signals successfully. The overall signal-to-signal-ratio was
17dB in the reconstructed signals. From the frequency dependent signal-to-signal-ratio (refer to
Fig. 5) it is clear that the order of the sources was the same in each frequency channel of the
reconstructed signals.
In first experiments with noisy real-world stereo recordings of speech the algorithm achieved a
signal-to-signal-ratio of more than 13dB.

CONCLUSION

A new algorithm is proposed for blind source separation of signals which contain correlated modu-
lation in different frequency channels. As shown in the first experiment, the algorithm successfully
separates artificially generated signals which contain correlated modulation. Hence, correlated
modulation is a criterion which can be exploited by blind source separation algorithms. In the
second experiment we demonstrate that the algorithm can be applied to speech signals. Speech
contains correlated modulation in different frequency regions. The signal-to-signal-ratio in the
separated signals is 17dB for digitally mixed speech and more than 13dB for real-world stereo
recordings.
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