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Abstract

A methodological framework for analyzing and modeling of multivariate data is introduced. In a first step, a cluster
method extracts data segments of quasi-stationary states. A novel cluster criterion for segment borders is introduced, which is
independent of the number of clusters. Its assessment reveals additional robustness towards initial conditions. A subsequent
dynamical systems based modeling (DSBM) approach focuses on data segments and fits low-dimensional dynamical systems
for each segment. Applications to middle latent auditory evoked potentials yield data segments, which are equivalent to
well-known waves from electroencephalography studies. Focussing to wavePa , two-dimensional dynamical systems with
common topological properties are extracted. These findings reveal the common underlying dynamics ofPa and indicate
self-organized brain activity.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multivariate time series are measured in various research fields, ranging from meteorology and geophysics at
macroscopic levels to micro-electrode measurements in brain tissue[1]. Measurements in spatially extended systems
frequently acquire data from detectors distributed over space. In neuroscience, there are several different approaches
to yield information about spatio-temporal activity of the brain. Apart from invasive measurements, which obtain
neural activity from brain tissue directly, non-invasive methods are widely applied. We mention the functional mag-
netic resonance interface (fMRI), positron-emission tomography (PET) and electro- and magnetoencephalogram
(EEG/MEG). While the former methods yield high-resolution measurements in space with poor resolution in time,
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EEG/MEG, in general, obtains effective electromagnetic potentials and fields on the scalp with good temporal
resolution. Since scalp measurements allow only a rough spatial localization, EEG/MEG are mainly applied for in-
vestigations of temporal processes[2]. Additional source localization techniques as computation of dipoles or current
source densities[3] improve the spatial resolution, which however remains below the resolutions of fMRI or PET.

Data analysis techniques for EEG are based frequently on assumptions about statistical properties of signals or
underlying dynamics. Especially models for multivariate signals lead to improved analysis and a better understanding
of underlying processes. There are two main modeling approaches in neuroscience[4], which are reflected in the
presented work and discussed in the following.

The top-down approach aims at extracting models for brain activity from measured data[5]. For instance, it com-
prises methods attacking ill-posed inverse problems and modeling of multivariate frequency spectra. Segmentation
methods have been developed in the last two decades, which detect quasi-stationary spatio-temporal states in EEG
[6–8]. These states are supposed to represent coherent neural activities and are called microstates[9]. The work
of Lehmann and Skrandies[7] represents one of the first methods in this field. In the following, we introduce the
method in some detail. Starting from the assumption, that coherent neural activity is reflected by global maximum
power of the EEG, the global field power (GFP) is computed as the root mean square of the potential deviations
from the spatial average. This definition makes the GFP independent of the reference electrode. Since coherent
states are observed quasi-stationary in time, transitions between states show changing spatial patterns at short time
scales. This means that borders of coherent states are marked by an increased dissimilarity of consecutive spatial
activities. This aspect leads to the definition of a global dissimilarity (GD). It is computed as the GFP of potential
differences of consecutive intensity maps, which are normalized with respect to their GFP[10]. Plotting GFP and
GD with respect to time, peaks of the GD coincide with troughs of the GFP. The corresponding time points mark
borders of coherent states, i.e. global dissimilarities of intensity maps show least global intensity of the EEG. These
segmented time windows are called microstates and show one prominent peak of GFP. Comparisons of microstates
in ERP-data with well-known cognitive components show good accordance[6]. An extension of the method has
been developed by Pascual-Marqui et al.[11] by introducing a clustering approach. Here, clusters in multivariate
signals are detected by the K-Means algorithm, while the number of clusters is estimated by cross-validation. The
present work aims to extend these methods by two additional features. We derive the observed segment structure
of the EEG by notions of complex systems and self-organization. Furthermore, we introduce a novel clustering
approach, which moves the problem of the right number of clusters to a simpler statistical problem.

The bottom-up approach considers microscopic properties of the investigated system, whose dynamical relations
serve as basic model equations[12]. An important concept within this approach is the idea of interacting modes.
It is basic in physics of complex systems[13] and has been applied in several works in neuroscience[14–16]. The
general concept introduces few interacting modes, which suffice for the description of the systems dynamics. In
case of spatially extended systems, spatio-temporal dynamics factorize to few spatial patterns evolving in time with
projected amplitudes. This approach has been extended by Uhl et al.[18] by a synchronous fit of optimal projection
modes and corresponding differential equations from data. Applications to petitmal epilepsy data[19] and ERP-data
[16] identified Shilnikov-attractors and cognitive components, respectively. A recent study of the method shows an
improved dipole localization from simulated EEG[20].

The latter dynamical systems based modeling (DSBM)[20] bridges top-down and bottom-up approaches by
extracting few interacting modes and a corresponding dynamical system from data. In[16], a two-dimensional model
has been extracted from multivariate ERP-data, and fixed points of fitted dynamical systems have been localized in
time windows of cognitive components. Additionally, transitions between cognitive components appeared evolving
in higher dimensions than the determined two and at smaller time scales. We find that cognitive components
represent low-dimensional attractive points in signal space, which are approached and left at changed time scales.
We also argue that low-dimensional global models for non-stationary multivariate time series in general do not



A. Hutt, H. Riedel / Physica D 177 (2003) 203–232 205

catch all local dynamic features, although they might represent optimal models for the average behavior of a signal.
Improved models are aimed to describe local behavior by separated models. We introduce an adaptive approach,
which replaces a global dynamical model by a sequence of local models separated by transition parts. The chain of
models is closed by attaching the single models by Poincaré mappings. However, this model approach is constraint
to signals, whose segments show quasi-stability and coherent multivariate behavior.

The present work introduces a methodological framework for modeling quasi-stationary multivariate time series.
We introduce a clustering method for data segmentation, which has been developed in previous works[21,22]. The
current work introduces the derivation of a novel cluster criterion, which simplifies the problem of optimal cluster
numbers. In a second part, we introduce DSBM. Since previous numerical implementations are quite time-consuming
for higher dimensions, an analytical derivation of optimal projection modes and corresponding polynomial ordinary
differential equations is presented[23]. In practice, the optimal choice of polynomial models depends strongly on
properties of the investigated data, which are biased by additional pre-processing steps as lowpass filtering. These
aspects are essential for the introduced framework and are examined additionally. Furthermore, we discuss the in-
fluence of the applied reference electrode to segmentation and modeling results. First applications to simulated data
evaluates derived features of the clustering approach. Applications of clustering and DSBM to middle latent auditory
evoked potential (MAEP) data follow. In the time window of wavePa , we observe similar topologies of determined
dynamical systems for three different data sets from different subjects, each with two different intrinsic noise levels.
The paper is organized as follows. InSection 2, we introduce the clustering method and DSBM, followed by consider-
ations of model estimations and the influence of re-referencing data.Section 3contains clustering results from simu-
lated data and measured MAEP-data. Results are discussed inSection 3.3, which is followed by concluding remarks.

2. Methods

2.1. Clustering approach

As mentioned in the previous section, components in event-related potentials exhibit low-dimensional behavior,
which is similar to dynamics near fixed points. Following this idea, we assume a signal trajectory in multi-dimen-
sional space, which shows a sequence of segments governed by saddle point dynamics. Data points accumulate close
to the fixed points in case of constant sampling rate. Since these regions of increased data density also represent clus-
ters in data space, we treat their detection as a recognition problem in data space[21,22,24]. In the present paper, the
K-Means algorithm[25] is applied for cluster detection, but any other unsupervised clustering algorithm is possible.

2.1.1. The clustering method
Let there be anN -dimensional data set{qi ∈ RN, i = 1, . . . , T } containingT data points. A clustering algorithm

aims at cluster centers{kk ∈ RN, k = 1, . . . , K} in data space, whose average Euclidean distance to a set of data
points is minimized. Here,K denotes the number of detected clusters, which is set a priorily. As a first step, initial
cluster centersk(0)

k are chosen randomly from the set of data points and their Euclidean distances to each data point
are computed. The K-Means algorithm defines memberships of data points to a cluster by the smallest Euclidean
distance to its center. Thus, data are segmented intoK clusters and new cluster centersk(1)

k are computed as averages

of clustered data points. Euclidean distances between data points and centersk(n)
k are re-estimated and convergence

is observed typically after 20 iterations. In the next step, Euclidean distancesd(k, i) = ‖kk − qi‖ from cluster
centersk to data pointsi are computed[22] and a map

φ : i → nc(i) = min
2<j≤k

d(j, i) ∀1 ≤ i ≤ T ,
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associates each data pointi to its nearest clusterk = nc(i). Since data points are ordered in time, the inverse map
φ−1 defines time windows, in which the signal approaches a cluster. While the mapφ is unique,φ−1 is not

φ−1 : j → {i|nc(i) = j} =
⋃

1≤α≤nj

Mαj ∀1 ≤ j ≤ k,

whereMαj = {iαj , iαj + 1, . . . , iαj +nαj } arenj subsets of successive time points. That is,Mαj represents a time
window, in which the signal approaches clusterj . These temporal partitions represent the obtained high-dimensional
clustering results.

2.1.2. Cluster criterion
Now, the degree of separation of neighboring clusters is quantified by an additional map

θ : i → snc(i) = min
2<j≤k,j 
=nc(i)

d(j, i) ∀1 ≤ i ≤ T ,

which associates each data point with its second nearest cluster snc(i). LetMα(i) denote the subset that contains
data pointi. Then

AK(i) = 1

N

∑
iαj∈Mα(i)

d(snc(iαj )) − d(nc(iαj ), iαj ), (1)

represents the percental contribution of cluster nc(i) to the whole signal forK clusters[21] andN abbreviates the
norm

∑T
i=1 AK(i).

Eq. (1)reflects the spatial configuration of data pointi and its nearest neighborsiαj . Data pointsiαj building a
well-separated cluster show largeAK(i), while smallAK(i) reflect rather unstructured data. Additionally,Eq. (1)
considers effects caused by different numbers of cluster members: contributions of few far-distance outliers are
small, while highly-populated clusters exhibit large values ofAK(i).

Finally, percental contributions are averaged over increasing number of clustersK

Π : i → p(i) = 1

R − 2

R∑
k=2

Ak(i). (2)

This cluster quality measure collects cluster results forR−2 different number of clusters and is regarded independent
of the number of clusters. It represents an averaged probability distribution and expresses how likely it is that a data
point i is member of a cluster. Good convergence is achieved forR ≈ 30.

An additional hard problem in cluster analysis is the dependence on initial clusters and the question whether a
global or local minimum is reached after the iterations. A numberL of different initial cluster configurations lead to
L measuresp(i) and an averaged cluster quality measure and corresponding standard deviation are determined by

p̄(i) = 1

L

L∑
l=1

pl(i), �p(i) =
√√√√ 1

L − 1

L∑
l=1

(pl(i) − p̄(i))2,

wherepl(i) denote the cluster quality measures for initial conditionl. Since first computations of histograms of
pl(i) show no standard distributions as normal or identical distribution, further statistical tests are not applied.

2.2. Dynamical systems based modeling

The proposed framework aims at modeling the dynamics of detected signal partitions by low-dimensional systems
ẏ = f [y] of ordinary differential equations. Thereby, the amplitudesyi determine the evolution of corresponding
static multivariate modes. The method also seeks to extend principal component analysis (PCA) by a synchronous



A. Hutt, H. Riedel / Physica D 177 (2003) 203–232 207

fit of dynamical systems[18,23]. Subsequently, we choose a cost function

V = VPCA + ε · Vd(f), ε ∈ R+
0 .

In this ansatz,VPCA represents the cost function for the derivation of static modes, whileVd yields an optimal fit
of a dynamical system from data. Increasing the weighting factorε, contributions by the dynamical system also
increases. Forε = 0, obtained modes are equal to PCA-modes.

2.2.1. Cost function VPCA

An N -dimensional signalq(t) ∈ RN with 〈q(t)〉 = 0 can be described as a superposition of static modesvi

evolving in time with amplitudesxi(t)

q(t) =
N∑
i=1

xi(t)vi . (3)

In the following,〈· · · 〉 denotes time average. In case of PCA, modes and amplitudes are chosen orthogonal leading
to the well-known relations

C · vi = λivi , 〈xi(t)xj (t)〉 = λiδij (4)

with C = 〈q ⊗ q〉/〈q2〉, the symbol⊗ denotes the outer product andδij represents the Kronecker symbol. From
(4), it follows

∑N
i=1 λi = 1. The errorE made by reconstructing the signal byM ≤ N modes is

E = 1 −
M∑
i=1

λi = 1 −
M∑
i=1

〈(q · vi )
2〉

〈q2〉 . (5)

This relation is widely used for dimensionality reduction (see, e.g.[14,26,27]). With Eq. (5)andv2
i = 1, it is

E = 1 −
M∑
i=1

〈(q · vi )
2〉

〈q2〉 = 〈q2 − 2
∑M

i=1(q · vi )
2 + ∑M

i=1(q · vi )
2v2

i 〉
〈q2〉

=
M∑
i=1

〈q2 − 2(q · vi )
2 + (q · vi )

2v2
i 〉

〈q2〉 − (M − 1) =
M∑
i=1

〈(q − (q · vi )vi )
2〉

〈q2〉 − (M − 1).

Since variations of error functionE are invariant under constant shifts, we obtain[23]

VPCA =
M∑
i=1

〈(q − (q · vi )vi )
2〉

〈q2〉 .

This special cost function breaks the degeneration of the solution space for orthogonal modes. Vanishing variations
of VPCA with respect to{vi} lead directly toEq. (4).

2.2.2. Cost function Vd

Since static modes evolve in time with amplitudesxi(t), multivariate dynamics obeys ordinary differential equa-
tions

ẋi (t) = fi [xj (t)], (6)

ẋi (t) =
M∑
j=1

Γ 1
ij xj +

M∑
j=1

j∑
k=1

Γ 2
ijkxjxk +

M∑
j=1

j∑
k=1

k∑
l=1

Γ 3
ijklxjxkxl + · · · (7)
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for M nonlinear interacting modes, which are equivalent to a linear regression model

ẋi (t) =
∑
α

aiαξα(t).

Here, nonlinear terms are collected in a time-dependent vector

{ξα} = {x1, x2, . . . , xM, x2
1, x1x2, . . . , x

2
M, x3

1, x
2
1x2, . . . , x

3
M},

and model coefficientsaiα are determined by minimizing

Vd = 1

M

M∑
i=1

〈(ẋi − ∑
α aiαξα)

2〉
〈ẋ2

1〉 .

The denominator scales the temporal derivatives and reduces effects caused by different amplitude magnitudes.

2.2.3. Final cost function, V
The orthogonality of PCA-modes limits an optimal fit to data structures. This severe constraint is abolished by

introducing biorthogonal modes[18]

w†
i · wj = δij, i = 1, . . . ,M, (8)

which leads to new definitions of amplitudes and cost functions. Introducing this relation andw2
i = 1 by Lagrange

multipliers, the final cost function reads

V =
M∑
i=1

〈(q − (q · w†
i )wi )

2〉
〈q2〉 + ε · Vd(ẏj , yk, alγ ) +

M∑
i,j=1

τij(w
†
i · wj − δij) +

M∑
i=1

αi(w2
i − 1) (9)

with

Vd = 1

M

M∑
i=1

〈(ẏi − ∑
α aiαξα(yj ))

2〉
〈ẏ2

i 〉
, yi = q · w†

i√
〈q2〉

.

ForM < N , low-dimensional descriptions of the signal are gained. Minimizing(9) with respect to{wi}, {w†
i } leads

to 2M coupled nonlinear vector equations[23]. Since these equations cannot be solved rigorously, a perturbational
approach is applied with the following properties:

• Forε = 0,V describes PCA. Biorthogonal modes{w†
k }, {wk} reduce to orthogonal PCA-modes{vk}, no dynamical

system is fit and the Lagrange multipliers{τkl}, {αkl} vanish.

• For ε > 0, minimizing V leads to biorthogonal spatial modes{w†
k }, {wk}, a dynamical systemf [a] and

non-vanishing Lagrange multipliers{τkl}, {αkl}.
• Increasingε from zero, the biorthogonal basis grows from the orthogonal basis, angles between basis vectors

change fromπ/2 to larger or smaller values.

2.2.4. Derivation of static modes and the dynamical system
Similar to perturbation theory in non-relativistic quantum mechanics, modes and Lagrange multipliers are ex-

panded in perturbation series inε and spatial modes{w†
k }, {wk} are set as superpositions of orthogonal modes, here

chosen as PCA-modes
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w†
k =

∞∑
j=0

N∑
l=1

εj c
(j)

kl vl , wk =
∞∑
j=0

N∑
l=1

εj d
(j)

kl vl , k = 1, . . . ,M.

The expansion coefficientsc(n)kl , d(n)
kl are non-quadratic matrices and represent the contribution of PCA-model to

new modek. In first perturbation order, definition(8) and the normalization constraints for{wk} lead to vanishing
self-contributionsc(1)kk = d

(1)
kk = 0. In casek 
= m, expansion coefficients fork,m ∈ [1, . . . ,M] are

c
(1)
km = −(1/2)(λm + λk)(∂Vd/∂w†

m)|0 · vk + λk(∂Vd/∂w†
k )|0 · vm

(λk − λm)2
, d

(1)
km = −c

(1)
mk , (10)

and fork ∈ [1, . . . ,M], m ∈ [M + 1, . . . , N ]

c
(1)
km = − 1

2(λk − λm)

∂Vd

∂w†
k

∣∣∣∣∣∣
0

· vm, d
(1)
km =

(
λm

λk

)
c
(1)
km . (11)

The terms(∂Vd/∂w†
m)|0 represent the influence of the dynamics fit in absence of a perturbation and reads explicitly

∂Vd

∂w†
k

∣∣∣∣∣∣
0

= −2
〈q̇f (0)

k 〉
〈ẋ2

k 〉
+ 2

〈q̇ẋk〉〈(2ẋk − f
(0)
k )f

(0)
k 〉

〈ẋ2
k 〉2

with

f
(0)
i =

∑
α

a
(0)
iα ξ (0)

α ,
∂fi

∂w†
k

∣∣∣∣∣∣
0

=
∑
α

a
(0)
iα

∂ξα

∂w†
k

∣∣∣∣∣∣
0

, ξβ = yr :
∂ξβ

∂w†
k

∣∣∣∣∣∣
0

= qδrk,

ξβ = yrys, r ≤ s :
∂ξβ

∂w†
k

∣∣∣∣∣∣
0

= q(δkrxs + δksxr),

ξβ = yrysyt , r ≤ s ≤ t :
∂ξβ

∂w†
k

∣∣∣∣∣∣
0

= q(δkrxsxt + δksxrxt + δktxrxs).

Additional variations with respect to the parameter matrixa yield

a(0) = 〈ẋ ⊗ ξ(xj )〉 · 〈ξ(xj ) ⊗ ξ(xj )〉−1.

Eqs. (10) and (11)implicate the non-degenerative case withλk 
= λm. In case of largek andm, PCA-eigenvalues
are very small,λm − λk → 0 and degeneration emerges[24]. However, it is not necessary to discuss this case for
smallk andλk − λm � 0, i.e. for low-dimensional descriptions. Final projection modes are found by substituting
(10) and (11)into

w†
k = vk + ε ·

N∑
l=1,l 
=k

c
(1)
kl vl . (12)

The corresponding dynamical system is determined by

Akl = 〈ẏ ⊗ ξ(yi)〉〈ξ(yi) ⊗ ξ(yi)〉−1, yk(t) = xk(t) + ε ·
N∑
l=1

c
(1)
kl xl(t). (13)

Now, minimal errorsVd with respect to weightsε define optimal projections and dynamics[23].
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2.3. Model estimation and corresponding problems

Eq. (7)represents a multivariate polynomial expansion at pointx = 0. It converges to measured data in finite order,
for sufficiently small magnitude ofxi(t). Therefore, the magnitude of amplitudes determines the least polynomial
order. While it is known that increasing the order reduces estimation errors, in many cases one is interested in an
optimal polynomial order. We would like to mention cross-validation methods and information criteria[28] in this
context. Since the presented work shows low estimation errors for cubic polynomials and drastic error increases for
lower orders, polynomials are fixed to cubic order in the following applications.

Let us consider anN -dimensional model of polynomial orderM. Its number of parameters is given top ·N with

p = N + 1

2!
N(N + 1) + · · · + 1

M!
N(N + 1) · · · (N + M − 1).

When this number exceeds the number of data points, the solution space of model parameters is degenerated and
solutions are ambiguous. For exceeding numbers of data points, regression methods yield unique data models.
Thus, there is a least number of data points for a reliable model of fixed order. For instance, two-dimensional cubic
models necessitate at least 18 data points. Summarizing, both the number and the magnitude of data points decide
whether data can be modeled by polynomials. For sufficiently large data sets, as EEG obtained from sleep studies
or motor-behavior studies, no such problems occur, while modeling of data in short time windows have to take care
about these aspects. Examples are event-related components or early evoked potentials, which contain usually only
tens of data points.

Increased sampling rates at experimental data acquisition and a subsequent application of lowpass filters support
modeling of short time windows. However, lowpass filtering generates artificial correlations between data points
and bias extracted models. According to the sampling theorem[29]

nthr = νs

2νf

is the number of points that are sufficient to resolve oscillations with signal frequencyνf at a sampling rateνs .
Sincenthr also corresponds to the least lag of vanishing autocorrelation of the investigated signal, data points with
lag ofnthr points are statistical independent. We point out that statistical dependencies do not remove the reliability
of dynamical models, but might questions common properties of obtained models. This aspect arises inSection 3.2.

2.4. Re-referencing to average reference

Several works argue that the choice of the reference electrode of zero-potential influences coherence and dipole
calculations[7,30]. In general, these effects are reduced off-line by re-referencing the data to an artificial reference.
Here, we present the widely used referencing to the spatial average

q̃N+1(t) = 0, q̃i (t) = qi(t) − 1

N + 1

N+1∑
j=1

qj (t), i = 1, . . . , N.

That is, the new signal̃q is obtained by an additional time variation forN channels. Formulating temporal dynamics
by autonomous differential equationsq̇i (t) = f (qj ), the correction emerges as an additional global driving force
F(t)

˙̃qi(t) = f̃ (q̃i , t) − F(t), F (t) = 1

N + 1

N+1∑
j=1

q̇j (t) (14)
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in a non-autonomous differential equation system. For signals with large time scales and spatial distributions of
q̇ with vanishing mean effects to the dynamical behavior will be small. Subsequently, contributions of average
re-referencing are large in transient signal parts, while dynamicsq̇ of functional components and clusters evolving
at large time scales are hardly influenced.

3. Applications

3.1. Simulated data

In this section, features of the introduced cluster criterion are computed by application to artificial multivariate
data. Cluster centers, Euclidean distances to data and percental contributionsAK(i) are computed forK clusters and
two different time windows. Beyond previous works[21,24,31], a statistical assessment of cluster quality measures
p(i) is applied for varying parameters. The investigated data setq(t) represents a superposition of three interacting
modes

q(t) = x(t)vx + y(t)vy + z(t)vz,

where amplitudesx(t), y(t), z(t) obey a three-dimensional dynamical system

dx

dt
= x − x(x2 + 4y2) + Γ (t),

dy

dt
= y − y(y2 + 4z2) + Γ (t),

dz

dt
= z − z(z2 + 4x2) + Γ (t) (15)

with identically-distributed noiseΓ (t) ∈ [−0.1; 0.1]. Dynamics described byEq. (15)arises in various physical
systems, e.g. in rotating fluids at large Taylor numbers[32]. In the current context, spatial modesvx, vy, vz represent
artificial (75× 75)-patterns (Fig. 1), i.e., the signalq(t) lives in a 5625-dimensional space. It is generated by 2200
integration steps with initial conditions(x(0), y(0), z(0))t = (0.03,0.2,0.8)t and its trajectory passes saddle points
at x3 = (0,0,1)t, x1 = (1,0,0)t, x2 = (0,1,0)t andx3 = (0,0,1)t in this sequence.Fig. 2shows a sampled time
series ofq(t).

3.1.1. Clustering approach
In the following, we investigate cluster results for various number of clusters.Fig. 3(a) and (b) shows Euclidean

distancesd(k, i) and percental contributionsAK(i) for the full time window and number of clustersK = 2,3,5
and 15. ForK = 2, data pointsi ∈ [0; 330] show smaller Euclidean distances to cluster 1 (solid line) than to cluster
2 (dashed line). This means that they are located near cluster 1. Ati = 330, data move from cluster 1 to cluster
2, leaves cluster 2 again ati = 1100 and returns to cluster 1. An additional cluster (K = 3) yields three cluster
transitions ati = 330, 1050 and 1600. Here, cluster 3 (dotted line), cluster 2 (dashed line), cluster 1 (solid line) and
cluster 3 are approached in this sequence. ForK = 4, only two approached clusters (solid and dashed lines) are
detected, while two others are located too far away from data. Further increases ofK yield three transitions between

Fig. 1. Spatial modes of simulated data. Patternvz is adapted from Thaler[37] by permission.
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Fig. 2. Sampled time series of spatial maps of simulated data. Quasi-stationary states emerge ati ≈ 240, 840, 1450 and 1920.

different clusters at similar time points (see plots forK = 5 and 15). In the following, we refer to time windows
between cluster transitions as clustered windows.

Eq. (1) introduces subsetsMα and percental contributionsAK(ij ) of clustered windows. They are illustrated
for K = 2 with i1 ∈ [0; 330], i2 ∈ [330; 1100] andi3 ∈ [1100; 2199] inFig. 3(a) and plotted for differentK in
Fig. 3(b). Finally, computed quality measuresp(i) show plateaus, troughs and steep rises (Fig. 3(c)) with clusters in
the same time windows. Large values ofp(i) originate from large values ofAK(i) and indicate clustered windows,
whereas rapid changes suppose points with changing cluster memberships for differentK. Thus, plateaus represent
clustered time windows, while troughs and rises mark their upper and lower borders, respectively.

Since spatio-temporal clusters are specified in temporal and spatial domains, averages of data in clustered windows
yield cluster centers, i.e. (75×75)-patterns.Fig. 4shows the computed cluster centers in the intervals [0; 314] (cluster
1), [416; 929] (cluster 2), [1150; 1450] (cluster 3) and [1710; 2130] (cluster 4). These patterns show good accordance
to original patterns (Fig. 1).

Since the choice of time windows is crucial to results and interpretation, we focus to a smaller time windowi ∈
[0; 500] and re-apply the clustering method. Plotted Euclidean distances (Fig. 5(a)), percental contributionsAK(i)

(Fig. 5(b)) forK = 2,3,4,5 and 15 and the quality cluster measurep(i) (Fig. 5(c)) show a smeared cluster border
at i = 230 and a sharp border ati = 370. This indicates rather spread and packed data pointsi ∈ [0,230] andi ∈
[370,499], respectively. The interval between the clustered windows represents the transition part between clusters.

Besides the effects of time windows, the number of clustersR also affects clustering results. InFig. 6, p(i) is
plotted with respect to indexi for R = 20, 30 and 40. We observe drop-offs and rises at the same time stepsi

for all three curves. Plots forR = 20 and 40 are shifted by a constant value ofp, while clustering withR = 30
pronounces the last clustered window and diminishes the cluster quality in the first window. Since cluster borders
are determined only by drop-offs and rises, all detected clustered windows coincide.

In the following, we aim to assess the presented method by some statistical tests.Figs. 3 and 5indicate both
temporal and spatial cluster structures, which should vanish for time-randomized signals.Fig. 7shows plots ofp(i)

for the artificial temporally-disordered data set. No distinguished temporal windows are observed as before, while
values ofp(i) are small.

Since the computed cluster centers depend on initial clusters, averaged cluster results and corresponding standard
deviations are computed forL = 10 different initial cluster configurations.Fig. 8showsp̄(i) and error bars�p(i)

for the time window [0; 500]. The transition parti ∈ [260; 380] shows slightly increased variances compared to the
clustered time windows. Pointsi ∈ [0; 150] appear statistically independent from pointsi > 180 and, subsequently,
originate from a different data structure. While error bars fori ∈ [180; 240] andi ∈ [240; 370] overlap, the increase
at i ≈ 370 does show only few overlapping error bars.
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Fig. 3. Clustering results of simulated data in the time window [0; 2199]. (a) Euclidean distancesd(k, i) from data toK cluster centers are
plotted with respect to time pointsi for differentK. At K = 2, areas between the lowest and the second lowest curve are denoted byAK(ij ),
corresponding to definition (1). (b) Percental contributionsAK are plotted with respect to time pointsi for differentK. (c) Cluster quality
measuresp are plotted with respect to time pointsi. Plateaus at [0; 314], [416; 929], [1150; 1450] and [1710; 2130] are detected.

Fig. 4. Spatial averages of clustered windows in corresponding sequence.
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Fig. 5. Clustering results of simulated data in time window [0; 499]: (a) Euclidean distances; (b) percental contributions; (c) cluster quality
measuresp are plotted with respect to time points, respectively.

3.2. Middle latent auditory evoked potentials

The investigated data sets were obtained from a study in which auditory brain stem responses (ABR) and auditory
evoked potentials of middle latency (MAEP) were investigated simultaneously. Stimuli were diotic rarefaction clicks
of 100�s duration at a level of 60 dB nHL. The interstimulus interval was chosen to vary randomly and equally
distributed between 62 and 72 ms, yielding an average stimulation rate of approximately 15 Hz. The EEG was
recorded with 32 electrodes which were placed according to an extended 10–20-system, Cs served as common
reference electrode.

Before digitization, raw data were passed through an analog anti-aliasing lowpass filter with a cutoff frequency
2 kHz. Data were sampled at a rate of 10 kHz, the recording interval comprised 600 samples in the time inter-
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Fig. 6. Cluster quality measurep plotted with respect to time for different parametersR.

Fig. 7. Cluster quality measurep(i) for time-randomized simulated data.
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Fig. 8. Average cluster quality measuresp̄ and corresponding standard deviations�p (error bars) plotted with respect to time. For reasons of
visualization, only every third time point is plotted.

val from −15 to 45 ms relative to stimulus onset. The 10,000 single trials were recorded and stored to hard
disk for off-line analysis. They were filtered by a zero-phase forward–backward bandpass filter with lower fre-
quencyνl = 20 Hz and upper frequenciesνh = 300 Hz and 2000 Hz, respectively. From the filtered trials a
weighted average was computed using the inverse powers of the noise in the trials as weightings[17]. For each
channel, trials show Gaussian amplitude distributions with varying means over time, but nearly time-constant
variances. Thus, averaging over trials extracts evoked responses as means, and averaged variances over time rep-
resent the noise level for each channel. The present work analyzes three data sets from different subjects show-
ing low (subject dj), middle (hr) and higher (rh) noise levels.Figs. 9–11show the electric activity measured on
the scalp for the three subjects. Single channel plots illustrate the temporal dynamics, while the temporal se-
quences of spatial activities (equipotential maps) exhibit the spatio-temporal dynamics. Additional data sets were
calculated for every subject and corner filter frequenciesνl = 20 Hz, νh = 300 Hz by re-referencing to spatial
average.

3.2.1. Cluster results with νh = 300Hz
Applying the first clustering step, Euclidean distances from data points to cluster centers are obtained.Fig. 12

shows results for three clusters. The lowest curves reflect smallest distances from data to clusters and indicate
approached cluster centers. In data sets dj and hr, clusters are approached in several similar time windows. Cluster
nc = 3 is approached until∼4 ms (dashed line), as data points near cluster 1 (data set dj) and cluster 2 (data set
hr) in the interval around 30 ms. In subject rh, cluster 1 (solid line) is approached in larger time intervals with
i ∈ M11 = [−15 ms; 13 ms] andi ∈ M21 = [22 ms; 45 ms], while clusters 2 (dotted line) and nc= 3 (dashed
line) are reached in between. Since increased numbers of clusters change the borders of time intervals, the cluster
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Fig. 9. Measured electric potentials on the scalp of subject dj. The top plots show activities in the single channels, at the bottom a time series of
spatial distributions is shown.

quality measurep(i) is calculated and plotted with respect to time inFig. 13. At 5 ms, descents inp are observed
in all data sets followed by a sharp rise. Following plateaus last until 7 ms, whenp drops again. As in the previous
section, this structure indicates a data cluster in the corresponding time interval. Clusters also are found around 17
and 29 ms for all data sets. These results show good accordance with clustered windows in re-referenced data.

Re-applying the cluster method to cropped time intervals for original and re-referenced data around 5 and 30 ms
confirms these findings (Figs. 14 and 15). The corresponding maps on the left side represent signal averages over
plateaus for single-referenced data. They confirm clustered windows by good accordance to quasi-stationary states
in the data.
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Fig. 10. Measured electric potentials on the scalp of subject hr shown in single channels and as a time series of spatial maps.

3.2.2. Results from DSBM with νh = 300Hz
This section presents the application of DSBM to a previously detected signal segment at 29 ms for all single-

referenced data sets. The segment borders are chosen according to cluster borders inFig. 15. As a first step, PCA is
applied in order to reduce the signal dimensionality with errorsE < 10−5 according to(5) for five modes. These
projections serve as a new five-dimensional signal, which is modeled by DSBM.

Reflecting considerations ofSection 2.3and applying(12), two-dimensional projection planes are obtained for
each data set from the first two PCA-modes (E < 10−2). Synchronously determined dynamical systems(13) are
fitted with minimal errorsVd(ε = 0.09) = 4 × 10−4 (data set dj),Vd(ε = 0.0) = 4 × 10−4 (data set hr) and
Vd(ε = 0.15) = 4 × 10−3 (data set rh) applying polynomials of third order. Lower polynomial orders lead to
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Fig. 11. Measured electric potentials on the scalp of subject rh shown in single channels and as a time series of spatial maps.

worse fits and bad reconstructions of the signal, whereas higher orders do not lead to new dynamical properties.
The obtained model parameters are shown inTable 1.

Backward transformations of modes{w†
i } and amplitudes{yi} to the original data space allow a superposition of

the modes according to(3) and the reconstruction of the analyzed signal. Since static modes are determined by their

coordinates in data space, they also represent spatial activity distributions. Reconstructed modesw†
1 , w†

2 are shown
in Fig. 16with corresponding amplitudes for all subjects. Solutions of the determined dynamical systems are gained
by integration and are also plotted inFig. 16as dashed lines. They show good accordance with the projected signal.

The basic assumption of attractive fixed points is verified by the topology of the obtained dynamical systems.
Integrations of the obtained differential equations with various initial points lead to sets of trajectories and elucidate
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Fig. 12. Plot of Euclidean distances from data to three detected clusters in temporal order for all data sets. The stimulus sets on at 0 ms.

the topology of the temporal dynamics (Fig. 17). All data sets show a saddle node FP3 aty = 0, a stable focus FP4
and another saddle node FP1. The additional stable focus FP2 is detected only in data sets dj and hr.

In Fig. 18, trajectories are shown for re-referenced data. The gray scales in the background code the absolute
values of dynamical systems|f(yi)|. These plots, introduced by Uhl et al.[18], illustrate temporal dynamics quite
well: small values are dark-coded and indicate regions of fixed points, i.e. regions of possible attractions or repelling.
In case of gradient dynamics, Uhl plots visualize potential landscapes with fixed points located in minima. Here,
two regions of attraction are visible in all subjects. They agree with previous results.

3.2.3. Results for νh = 2000Hz
In this section, we analyze data without off-line lowpass filters.Fig. 19shows Fourier spectra of four high-energy

data channels at componentPa for all subjects. We observe major peaks around 200 Hz for all subjects and

Table 1
Coefficients fromEq. (13)of determined dynamical systems for all subjects

Subject Modei Ai1 Ai2 Ai3 Ai4 Ai5 Ai6 Ai7 Ai8 Ai9

dj 1 0.05 −0.26 0.012 −0.26 −0.07 −0.06 −0.24 −0.34 0.12
2 0.01 −0.07 −0.02 −0.02 0.12 0.01 0.13 0.38 0.40

hr 1 0.05 0.21 −0.05 0.25 0.13 −0.08 0.04 0.02 −0.06
2 −0.00 −0.07 0.01 0.11 −0.18 −0.06 0.18 −0.15 0.02

rh 1 0.05 −0.06 0.06 0.04 0.01 −0.07 0.00 −0.00 0.00
2 −0.03 −0.09 −0.00 −0.17 −0.08 0.23 0.08 0.01 0.01



A. Hutt, H. Riedel / Physica D 177 (2003) 203–232 221

Fig. 13. Cluster qualityp plotted with respect to time for original (solid line) and re-referenced (dashed line) data. In all data sets, clusters are
recognized at 30, 18, 12 and 5 ms. The stimulus sets on at 0 ms.

non-vanishing contributions up to 1500 Hz. Obtained cluster resultsp̄ and corresponding standard deviations
�p are shown inFig. 20. We observe similar clustered windows. Focussing to those time intervals, we apply
DSBM and obtain optimal projections on two spatial modes. Their corresponding amplitudes and Fourier spectra
are shown inFig. 21. Comparing these results with projections obtained forνh = 300 Hz, sign flips are ob-
served in amplitudes of subjects dj and rh, which reflect the numerical non-uniqueness of principal components.
We also observe augmented contributions of lower frequencies, which reflect the known lowpass filter properties
of DSBM [20]. Finally, we determine optimal polynomial models and integrate the obtained differential equa-
tions with various initial values. Increased modeling errors are obtained toVd = 0.093 (subject dj),Vd = 0.152
(subject hr) andVd = 0.230 (subject rh), which results from the increased noise level.Fig. 22 presents sets of
trajectories for all subjects and we observe again a saddle point FP3 and a stable focus FP4 in all three data
sets.

3.3. Discussion

Let us summarize the results.Fig. 3shows clustering results obtained from the artificial data set. The clustered
time windows inFig. 3(c) coincide with data windows of quasi-stationary states. The equivalence of cluster centers
in Fig. 4 and quasi-stationary data patterns confirm the findings. These results propose the clustering approach
as an objective algorithm for detecting multivariate quasi-stationary attractors. First successful computations ofp

for event-related potentials[31] indicate a broad bandwidth of applications. Since there are many methodological
features, on which the clustering results depend, additional assessment is applied. One of the most important features
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Fig. 14. Cluster results obtained in the time window [4 ms; 8 ms] for all data sets. Probability plateaus indicate clustered data, drop-offs mark
their borders (vertical dashed lines). Spatial maps on the left side show signal averages in the marked time windows.

is the time window of clustered data.Fig. 5shows results obtained from cropped data. We observe similar borders
of clustered windows compared to the previous results. The slight deviations of results arise from the focused
view to data, which allows a more detailed investigation of the data structure. The previous right cluster border
at i = 416 is re-gained, while the left border ati = 314 has to be shifted to lower values. We point out that the
method yields transition windows between clusters with smeared borders rather than fixed borders. This smearing
reflects typical data properties of continuous time series. Since the quality measure is computed by averagingR

percental contributions,p is regarded to be independent of the number of clusters. A comparison of cluster results
from three differentR (Fig. 6) confirms this independence. Shifts and scalings ofp are observed, but cluster borders
remain constant. As in the previous examinations, time pointsi at drop-offs and rises are invariant and, hence,
reflect intrinsic properties. If this is true, a randomized time series should not show any structure.Fig. 7confirms
this aspect. As a last evaluation step, we investigate the dependence on initial clusters. Mean values and standard
deviations ofp (Fig. 8) illustrate the significance of results. We observe statistically independent mean values of
segmented clustered windows [0; 150] and [400; 500] with non-overlapping error bars. We conclude that troughs
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Fig. 15. Cluster results in the time windows of wavePa . Window borders are obtained fromFig. 13. Vertical dashed lines mark cluster borders
for original data (solid line), which coincide to the borders of re-referenced data (dashed line). On the left side, averaged spatial distribution
from intervals [28.0 ms; 31.0 ms] (data set dj), [28.0 ms; 31.0 ms] (data set hr) and [26.6 ms; 30.4 ms] are shown.

and sharp rises ofp represent borders of clustered windows and are robust against time windowing, number of
clusters and the choice of initial clusters.

After these evaluations, measured early evoked potentials are analyzed. First applications to data with applied
lowpass filterνh = 300 Hz reflect quasi-stationary behavior by drop-offs, sharp rises and plateaus of the qual-
ity measures (Fig. 13). The observed clustered windows shows good accordance to quasi-stationary patterns in
Figs. 9–11and the so-called waves[33]. The early waveV from 5 to 7 ms belongs to auditory brainstem responses
(ABR) and originates presumably from the lateral lemniscus and inferior colliculus. Components of middle latent
potentials are also prominent at 18 and 30 ms as componentsNa andPa , respectively. They are supposed to be
generated subcortically in the midbrain and in the temporal lobe[34], respectively. Furthermore, all subjects show
rather robust cluster windows for single-electrode reference and average reference. This important aspect originates
from the idea of similar sequential patterns and represents a necessary condition for a reliable segmentation method
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Fig. 16. Results of DSBM for componentPa and all data sets. Right side: amplitudes of the determined low-dimensional projections (solid line)

and solutions of the determined dynamical systems (dot-dashed line). Left side: reconstructed spatial modesw†
1 , w†

2 .
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Fig. 17. Sets of trajectories of componentPa for νh = 300 Hz and all subjects. The right side shows focused plots of attractive areas on the left
side. Circles mark initial values of integration, while boxes denote fixed points.
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Fig. 18. Uhl plots for all re-referenced data sets. An Uhl plot shows the projected signal trajectory and its corresponding dynamical landscape
|f(y1, y2)| in the background as gray scales. Low values are dark-coded and represent regions near fixed points.

[7]. Focussing to waveV andPa (Figs. 14 and 15, respectively), spatial maps are obtained. We observe a good
accordance to quasi-stationary patterns inFigs. 9–11at∼6 and∼30 ms, respectively. We point at the latency vari-
ability of componentsV andPa between subjects, which reflects the physiological diversity of human brains even
at such early and functional rudimentary stages.

Applications of DSBM to wavePa yields optimal projective spatial modes and corresponding amplitudes, shown
in Fig. 16for all subjects. These amplitudes obey dynamical systems, whose corresponding vector fields are shown

Fig. 19. Frequency spectra of all data sets forνh = 2000 Hz. For each data set, spectra of four high-energy channels are computed.
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Fig. 20. Average cluster quality measurep̄ and corresponding standard deviations�p (error bars) plotted with respect to time forνh = 2000 Hz
and all data sets.

Fig. 21. Amplitudesy1,2(t) and frequency spectraF(ν) of obtained low-dimensional models forνh = 2000 Hz and all data sets.
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Fig. 22. Sets of trajectories of componentPa for νh = 2000 Hz and all subjects. The right side show focused plots of attractive areas on the left
side. Circles mark initial values of integration, while boxes denote fixed points.
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in Fig. 17. We observe similar topologies for all subjects, while the stable focus FP2 is not detected in data set
rh. Since the length of the time window and the amplitude scale decides how far and how fast trajectories evolve
from the origin, the observed dynamics appears more local in some cases. We argue that FP2 results from scaling
differences, whereas fixed points FP1, FP3 and FP4 contribute mainly to the dynamics of componentPa and
define its dynamical behavior. Attractive regions in re-referenced data agree with the detected topology. However,
investigations of regions near fixed points, dark-coded inFig. 18, show slightly different stability properties. Since
corresponding investigations are still in progress, we refer to[35].

Studies of MAEPs usually apply bandwidth filters with upper frequencies of about 300 Hz (see, e.g.[36]).
However, modeling of filtered data implicates a statistical bias (Section 2.3). We compute point lagsnthr ≈ 17
for νh = 300 Hz, which represent time lags of 1.7 ms. This means that the modeled time intervals contain four
independent data points for all subjects. One might argue that only these few data points should be analyzed.
First of all, fitting of dynamical models is not constrained to independent data, as the temporal dependence it-
self is modeled by differential equations. Additionally, model dynamics obtained from few data points are not
unique, i.e. not reasonable. For verification, we computed models from four temporal equidistant data points
for all subjects in corresponding time intervals and found divergent dynamical topologies. Even by increasing
the number of points to 5, no common topology was found. This reflects the model ambiguity discussed in
Section 2.3. From further analytical investigations, it turns out that the obtained models critically depend on given data
points.

Nevertheless, statements about common topological properties of models are not reliable for a single lowpass filter.
While each of the models obtained withνh = 300 Hz is reliable, common features might be questioned due to the
mentioned bias. Therefore, we aim at analyzing data, whose number of statistically independent points exceeds the
number of model parameters. The necessary least filter frequency is determined toνf = 18/(2× 5 ms) = 1800 Hz
for a time window of 5 ms. Off-line unfiltered data withνh = 2000 Hz fulfills this condition and, hence, is analyzed
in the following.

Borders of clustered windows turn out to be robust towards the additional noise level (Fig. 20) and define time
windows for applications of DSBM. Subsequent optimal dimensionality reductions to a two-dimensional model
yield amplitudes and synchronously fit dynamical systems. InFig. 22, obtained vector fields for all subjects illustrate
a good agreement of stability properties of fixed points FP3 and FP4 with the previous results. Since we focus the
integration to region neary = 0, we might miss additional fixed points for larger|yi |. While this aspect should be
investigated, discussions about scaling effects would exceed the aim of the present paper and we refer the reader
to [35]. We find that both in data filtered withνh = 300 and 2000 Hz, similar topologies of dynamical systems are
found. We recognize invariant dynamical models towards lowpass filtering and noise level. The same fixed points
FP3 and FP4 are found aroundyi = 0 in data sets of three different subjects each with two different noise levels.
These findings indicate a general topology of the componentPa , i.e., fixed underlying processes. However, further
topological assessment is necessary.

4. Conclusion

We have introduced a methodological framework for analyzing and modeling quasi-stationary multivariate time
series. The framework contains a cluster analysis and a subsequent DSBM-approach. In a first step, the clustering
method yields data segments of quasi-stationary regions in data space. A novel cluster criterion is derived by intro-
ducing a cluster quality measure, which is independent of the number of clusters. Results obtained from simulated
data are assessed statistically. Focussing to segmented data, DSBM fits synchronously optimal low-dimensional
projections and deterministic dynamical systems.
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Applications to MAEP-data from three different subjects yield data segments, which correspond to the well-known
evoked potentials. For wavePa , DSBM extracts two-dimensional dynamical models, while the corresponding am-
plitudes are interpreted as order parameters of underlying processes. The obtained models show common topological
properties, which are invariant under variations of the applied noise filters. These findings indicate an ordered and
self-organizing brain state during the emergence of wavePa .

Future work will apply the proposed combination of methods to experimental data obtained with slightly varied
paradigms. We conjecture that every experimental paradigm leads to one corresponding topology for each wave
and, hence, can be classified by indices known in dynamical systems theory. This classification scheme for early
evoked potentials would be valuable in brain science, especially in clinical research.
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