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Speech Pause Detection for Noise Spectrum
Estimation by Tracking Power Envelope Dynamics

Mark Marzinzik and Birger Kollmeier

Abstract—A speech pause detection algorithm is an important speech pause detection. Martin [2], [3] uses the minimum of the
and sensitive part of most single-microphone noise reduction sub-band signal power within atime window of about 1 s as an es-

schemes for enhancement of speech signals corrupted by additiveyjm ate ofthe noise powerin the respective sub-band. Thisideawas
noise as an estimate of the background noise is usually deter-

mined when speech is absent. An algorithm is proposed which alreadyformulgted.by Paul [4]. D.oblllnger[S] proposeq aF:ontln-
detects Speech pauses by adaptive|y tracking minima in a noisy uous noise estimation SCheme S|m||a.r to Martin’s Wh|Ch IS com-
signal’'s power envelope both for the broadband signal and for putationally more efficient. This scheme was, however, not sys-
the high-pass and low-pass filtered signal. In poor signal-to-noise tematically tested. Hirsch [6] and Hirsch and Ehrlicher [7] pro-
ratios (SNRs), the proposed algorithm maintains a low false-alarm seq an algorithmwhichis based onthe observation thatthe most
rate in the detection of speech pauses while the standardized . . . .
algorithm of ITU G.729 shows an increasing false-alarm rate Commonlyoccurrl_ng sp(_actral magnltud_evalue_lnclean speechis
in unfavorable situations. These characteristics are found with Z€ro. Hence, having noisy speech their algorithm measures the
different types of noise and indicate that the proposed algorithm distribution density function of the spectral magnitude and deter-
is better suited to be used for noise estimation in noise reduction mines the maxima which are then used as an estimate of the re-
algorithms, as speech deteriorations may thus be kept at a low ghactive noise magnitude. These kind of algorithms which avoid

level. It is shown that in connection with the Ephraim—Malah noise - . . -
reduction scheme [1], the speech pause detection performanceSpeeCh pause detection for noise estimation are supposed to cope

can even be further increased by using the noise-reduced signal Petter with nonstationary (i.e., fluctuating) noise, since they are
instead of the noisy signal as input for the speech pause decisiongenerally faster in their adaptation to changing noise levels even

unit. during speech activity. On the other hand, the continuous update
Index Terms—Envelope dynamics, envelope minima, noise esti- Of the noise estimate (independently in the sub-bands) is suscep-
mation, noise reduction, speech pause detection. tible to erroneously capture speech energy. This, however, leads

inevitably to speech deteriorationin asubsequentnoise reduction
process. Fischer and Stahl [8] investigated a spectral subtraction
noise reduction algorithm with a continuous noise spectrum up-
EW technologies in mobile telecommunication, robustating scheme. They found that the corruption of the noise esti-
speech recognition and digital hearing aids are a stronghate by speech is too large to be further considered and conclude
driving force in the development of real-time noise reductiothat voice activity detection plays animportantrole and cannotbe
algorithms. The number of publications on single-microphorfglly omitted. Recently, Nemeat al.[9] proposed to use the kur-
noise reduction algorithms indicates an unbroken interaskis (fourth-order statistics) of the noisy signal to continuously
in this research field over the past two or three decades.eAtimate speech and noise energies. The examples presented used
crucial point for these kind of algorithms is the concurremoisy speech signals with positive signal-to-noise ratios (SNRs)
estimate of the target speech spectrum and the interfering naisel yield promising results, but further researchis required to ex-
spectrum in particular. Since most realistic noisy environmerttsnd these results to negative SNRs and different classes of noise,
are characterized by nonstationarity, it is necessary to updeggpectively.
the noise spectrum estimate as often as possible to maintaiostauthorsreporting onnoise reduction referto speech pause
an effective noise reduction. This can be done, for exampletection when dealing with the problem of noise estimation. As
whenever target speech is absent, which means that the ingltsch [6] pointed out, “this is a very difficult and ultimately un-
signal consists of noise only. Another constraint is the limitesblved problem for realistic situations with a varying noise level.”
complexity of the algorithm when it is supposed to becomglot of studies thus evade the problem by using an ideal speech
implemented in digital circuits. Hence, computational angause detection using the clean speech signal or by using only
memory requirements should be as low as possible. short test signals with an initial noise-only period for noise esti-
Different algorithms have been proposed whicimtinuously mationwithoutthe need for updating the noise spectrum estimate.
update the noise estimate and hence avoid the need for expligBome applications like audio restoration (e.g., restoration of old
gramophone recordings) the noise estimationindeed can often be
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Various procedures for speech pause detection have beespeech/nonspeech identification based on four different pa-
describedinthe literature so far. Kang and Fransen [12] propogeadheters. The first is the maximum value of the auto-correlation
a very simple scheme. Whenever the low-pass band energyf(inction of the LPC residual signal, which represents the degree
the frequency range from 0 to 1 kHz) of a current signal frana the periodicity of the signal waveform. Second is a spectral
is below a specific fraction of the low-pass band dynamic rangéope parameter, third is a reflection coefficient which itself is
as scanned in the past frames, the frame is used for updatingagbmputed from some PARCOR coefficients, and fourth is the
noise spectrum estimate. Obviously, this procedure has strangnal energy. For each of the parameters, Itoh and Mizushima
limitations. It will only work with higher SNRs and will fail used empirically determined thresholds for a speech/stationary
in noises with prominently low frequencies. A more elaborateise/nonstationary noise decision. It seems, however, that the
algorithm using adaptive energy thresholds was proposed dgcision for nonstationary noise is made only on the basis of the
van Gerven and Xie [13]. Elberlingt al.[14] used the so-called spectral slope parameter. Unfortunately, the proposed algorithm
synchro method for spectral estimation of the background noiseas not tested in low SNR situations.
This procedure makes use of the specific characteristic of voicedrrespective of the actual kind of speech pause detector used,
speech sounds, i.e., that the energy is confined to pitch-harmaaicomprehensive and fair evaluation should include its hit rate
frequencies. Based on successive multiplication of the envelopaswell as its false-alarm rate using different noises with a large
from neighboring pairs of band-pass signals, followed by a suwariety of SNRs. These measures reveal most of an algorithm’s
mation over all resulting signal-products, a global measure cdipabilities and deficiencies. For an application in noise reduc-
energy synchronization is obtained which is then used to clasdifyn, the problem is that a speech pause detection algorithm with
thetime frames of the input signal into those dominated by speexhigh false-alarm rate results in remarkably deteriorated speech
(high synchronization) and those not dominated by speech (lafter the noise reduction. On the other hand, a speech pause de-
synchronization). This patent application is reported to wotkction algorithm that finds too few of the actual speech pauses
successfully in SNRs ranging from9 to —9 dB with various results in worse reduction of the noise. Hence, noise estimation
noises. However, an increase of wrong speech pause decisisrasvery sensitive stage in the noise reduction process.
with decreasing SNR is reported. Sheikhzadehl. [15] pro- The algorithm for speech pause detection that will be de-
posed a pause detection algorithm based on an auto-correlatioribed in the next section dynamically tracks the dynamics of
voicing detection which was performed on the enhanced sigtlaé signal’s temporal power envelope as well as of its low- and
(i.e., after the noise reduction rather than on the noisy signdijgh-pass frequency band power envelopes. After a number of
Although extensive testing is mentioned, no performance resuliseshold comparisons, a frame-by-frame decision is made on
are presented. However, the authors state that the algorittita presence of a speech pause. This approach was motivated by
is not supposed to work well below SNRs of 0 dB. Dendrina$ie work of Festert al.[24], who used the minima in the signal
and Bakamidis [10] presented an algorithm for determining tle@velope for estimating the noise level in a speech-plus-noise
starting and ending points of speech segments in colored-naggmal to control an AGC (automatic gain control) algorithm for
environments through singular value decomposition based logaring aids. The proposed algorithm can be regarded as an ex-
some thresholds which have been determined experimentaignsion of the simple scheme proposed by Kang and Fransen
Good performance was proved for SNRs higher than 0 dB.2]. In order to assess its applicability to real-time noise reduc-
However, the complexity of the algorithm makes a real-timgon for practical applications (see above), both the hit rate and
implementation difficult. Recently, EI-Maleh and Kabal [16false-alarm rate are evaluated for a large range of SNRs and dif-
performed a comparative study of three voice activity detectiderent types of noise and compared to a voice activity detector
(VAD) algorithms: a VAD used in the GSM cellular system [17](VAD) algorithm recommended by the International Telecom-
the VAD used in the enhanced variable rate codec (EVRC) wiunication Union [25].
the North American CDMA-based PCS and cellular systems
[18], and a third-order statistics based VAD [19]. Unfortunately, II. ALGORITHM
the authors did not investigate false-alarm rates and hit rate
systematically but present only some noisy waveforms with t
respective VAD decisions. However, the EVRC VAD is reporte
to show consistent superiority over the other VADs. David
et al.[20] implemented a speech activity detector using cepstra
coefficients for use in a real-time noise cancellation system. E(p) = Z | X (p, wk)IQ. (1)
However, a comprehensive evaluation of the detector itself is not &

given. Abdallaletal.[21] introduced alocal entropic criterionfor . .
) . ere, X(p, wy) denotes the spectral component of the noisy
speech signal detection. Very good performance down to SNRS '~ X "
wgput signal at frequency; at time framep. In addition, a

of —20 dB is reported. However, only white noise was tested 7-pass band nower envelope and a hiah-pass band power en-
far. McKinley and Whipple [22] suggested a model based speeC P P . P gh-p P

. ; LS . velope are calculated:
pause detection algorithm which is claimed to be robust for low )
SNRs. The speech pause detection problem is formulated into a Erp(p) = > |X(p, w)| 2
decision theory framework. However, this algorithm requires ex- l
tensive training of a Hidden Markov Model with the set of speech Enp(p) = Z 1X(p, w)|? 3)

prototypes to be encountered. Itoh and Mizushima [23] proposed

he speech pause detection algorithm calculates the signal’s
mporal power envelopg(p) by summing up the squares of
e spectral components of the input signal in each short-time
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wherel runs over all spectral components up to the cut-off fre-
quency, andn runs over the remaining spectral components. In
ordertoslightlysmooththe envelopé¥p), Erp(p) andExp(p)

are averaged over a few frames by a recursive low-pass filter of
first order with a release time constamnt; no smoothing is per-
formed in case of an increase in energy (i.e., attack time zero) to
avoid smearing over onsets. The algorithm tracks the minimum

value and the maximum value of each envelope and uses these for

the speech pause decision as described by the following scheme.

1) After an assumed 200 ms initial phase of noise only the
minimum and maximum values are set as follows:

Emin(p) = E(p) Emax(p) = E(p)
ELP, min(p) = ELP (p) ELP, max(p) = ELP (p)
Eup, min(p) = Eur(p) Eup, max(p) = Eur(p). (4)

This guarantees that the minimum envelope values corre-
spond roughly with the noise energy at the beginning.

2) The minimum and maximum values are updated for each
of the three envelopes in the following manner.

« If the current envelope value is larger than the max-
imum value for the corresponding envelope, then
the maximum value is set to the current value. Oth-
erwise, the maximum value slowly decays. This is
done by arecursive low-pass filter of first order with
a release time constani..ay, Which takes as input
the current envelope value.

« Ifthe current envelope value is smaller than the min-
imum value for the corresponding envelope, then
the minimum value is set to the current value. Oth-
erwise, the minimum value is slowly raised. This is
done by arecursive low-pass filter of first order with
attack time constant,,;.., which takes as input the
current envelope value.

3) The differences between the maximum and the minimum
values are calculated for each envelope

A(p) = Ema.x(p) - Emin(p)
AT,P(p) = ET,P, max(p) - ET,P, min(p)
AHP(p) = EHP, max(p) - EHP, min(p)' (5)

4) Three different criteria are introduced of which only one
has to be true for making the decision that target speech is
not present in the actual frame: a) the speech pause deci-
sion can be made because of alow signal dynamics in both
the low-pass and the high-pass babglf Speech Pauge
b) the decision can be based on the low-pass band infor-
mation (P Speech Pau¥eand c) it can be made upon
the high-band informatiorHP Speech Pau}eThese de-
cision criteria are derived as follows.

a) If Arp is smaller than some thresholdand also
Agp < n then it is assumed that only noise is
present due to the very small dynamic range of the
signal & Dyn Speech Pauge

b) If a) is not true, it is checked whethek;p is
bigger thann (otherwise the dynamic range in
the low-pass band is very small and it should

not receive too much attentios- no LP Speech
Paus@. Now, if the difference between the current
Erp(p) and ELp min(p) of the low-pass band
envelope is smaller than some fractipnof A p
(which means that the actual envelope is near its
minimum), a closer look at the high-pass band is
necessary to support a speech pause decision.

Case 1) Aygp of the high-pass band is smaller
than threshold,.

In this case no additional informa-
tion can be obtained from the high-pass
band because of its small dynamic
range. Now, if at least'(p) (the signal’s
envelope) lies in the lower half of its
dynamic range [i.e., in the lower half
between E,,;,(p) and Ep.x(p)] the
current frame can be assumed to be
a speech pause because of the close-
ness of the low-pass band energy to its
minimum value & LP Speech Pauje
otherwise, however, there is not enough
support for a speech pause decisien (
no LP Speech Pauge

Case 2)Ayp is bigger than two times the
thresholdy.

In this case, there is enough dynamic
range to pay attention to the high-pass
band. Thus, it is demanded that the
difference between the curreByp(p)
and Eyp min(p) of the high-pass en-
velope is smaller than two times the
fractionpc of Agp to support the small
envelope value in the low-pass band.
Then a noise-only frame is assumes (
LP Speech Pau¥eThis demand is not
as strict as that for the low-pass band, to
account for the case that the disturbing
noise has a rather high-frequency char-
acteristic. But if this condition is not
fulfilled, speech may be present in the
actual frame £ no LP Speech Pauke

Case 3)Agp is smaller than two times the
thresholdn, but bigger thar,.

In this case, which is not as clear
as Case 2, it is only demanded that
Eyup(p) (the high-pass envelope) lies in
the lower half of its dynamic range to
support the small envelope value in the
low-pass band. Then it is assumed that
target speech is absent-(LP Speech
Paus@. However, if this condition is not
fulfilled, speech may be present in the
actual frame+£ no LP Speech Pause

¢) Condition b) accounts for the case that the dis-

turbing noise has a rather high-frequency charac-
teristic, hence the speech pause decision should
mainly be made upon the information in the
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During the development of the algorithm noisy signals gener-
Short-time Fourier Lp Pk e g | B ek e e | ated from various different noise types and speech signals at sev-
of input signal power envelopes power envelapes eral SNRs were used for performance verification. Finally, the
Evomos Evsnm: Are, following values were chosen for the free parameters: The input
P Bt signal was digitized with a sampling frequency of 22 050 Hz and
. e<n partitioned in Hann-windowed segments of length 8 ms with
and 4 ms overlap. These segments were padded with zeros and a
256-point FFT was performed. This framework is compatible
{oyn with most single-microphone noise reduction algorithms which

seeech  can thus easily be integrated. Such short segments are motivated
by the fact that then the same signal analysis and synthesis as
necessary for a real-time noise reduction environment can be
used. Due to the longer signal delay, longer window lengths in
real-time signal processing applications would cause problems
7 i with lip reading and would cause stuttering when speaking. The
cut-off frequency between low-pass and high-pass band was set
to 2 kHz, motivated by the fact that excluding speech frequen-
cies above 1.9 kHz has a roughly similar effect on speech intelli-
gibility as excluding those below this value [26]. The time con-
stantrg for the envelope smoothing was set to 32 ms. The time
constants ecay aNdr,ise Were both setto 3 s. These constants
were determined by examination of the envelopes from several
speech samples. With these settings a good approximation to the
actual dynamic range of the signal and of its “placement” in the
%;’eech level area under a variety of conditions was achieved. However,
Pause) systematic variations of these parameters were not investigated.
The thresholdy was setto 5 dB and the fractipawas setto 0.1.

Speech
Pause)

Ill. EXAMPLES

To illustrate the speech pause detection scheme, Figs. 3-5

o show some detection examples using a target sentence of ap-

gveecy proximately 5 s length mixed with different noises (digitally
added).

Fig. 3 shows an example with car noise. This type of noise
was recorded in the cabin of a driving car and has dominant parts
in the low frequency range. The bar at the bottom of the panels
shows the real speech pauses which were determined manually.
[For comparison, the waveform of the clean sentence is dis-
Fig. 1. Flowchart of the proposed speech pause detection algorithm operafigyed in Fig. 2 (upper panel); the lower panel shows the mixed
on a single time frame. See text for details. signal with a SNR of-5 dB.] The speech pause decisions of

the algorithm are displayed in the other bottom three bars. The
low-pass band. To account also for the case thdistinct bars give additional information about the reason for the
it has a rather low-frequency characteristic, thepeech pause decision. The first bar shows a symbol whenever
same conditions as under condition b) have to eespeech pause is detected due to a small dynamic range of the
checked but now with reverse roles of the low-passignal in the low-pass band as well as in the high-pass band, and
and the high-pass bands to determine whethgenerally in the initial noise estimation phase (the first 200 ms).
target speech is absemt® Speech Pauge The second bar shows a symbol whenever a speech pause is de-

Fig. 1 gives a flowchart of the proposed speech pause dettsted on the basis of the low-pass band information. Finally, a
tion algorithm. The flowchart is not fully symmetrical with re-symbol in the third bar means that the decision was based on the
spect to LP and HP speech pause detection since several retiigh-pass band information.
dant tests are omitted. The car noise example shows that it is worthwhile to consider

Due toiits flexible design this novel approach for speech pausand-limited envelopes. In this case, the signal’s low-pass band
detection can easily be adjusted to obtain a rather low falsmvelope (as well as its broadband envelope) are strongly dis-
alarm rate by adapting the main parametgasidpc. Generally, turbed by the noise. However, the high-pass envelope is “clean
a low false-alarm rate is desirable to reduce speech distorti@mough” for obtaining reliable speech pause decisions (Fig. 3).
in the subsequent noise reduction process. However, this afsaually, the third bar in the figure panels shows that the deci-
results in a reduced hit rate. sion is mainly based on the high-pass information.

yes

Speech pause
detected

(HP
Speech
Pause)
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) . “ . . Fig. 3. Low-pass band power envelope (upper panel) and high-pass band
Fig. 2'- Upper panel: ngeforr_‘n of th.? seyr}tence ! playgd ina theater festly ||()Wer envelope (lower panel) of the sentence displayed in Fig. 2 when mixed
honoring the German writer Heiner Miller.” Lower panel: Sentence mixed wi

car noise at-5 dB SNR ith car noise at—5 dB SNR (solid curves). The dashed curves display
’ Eup, min aNdEnp | max, respectively. The detected as well as the actual speech
pauses are displayed in the additional bars (see text for details).

Fig. 4 shows an example, where the sentence is mixed with ) ) ]
the noise of a drilling machine at5 dB SNR. This noise makes speech coding scheme as its Recommendation G.729 Annex B

it impossible to get reliable speech pause information from th>l- The VAD algorithm makes a voice activity decision every

high-pass channel, but in this case the low-pass band inforntd-Ms based on differential parameters of the full-band energy,

tion can be used. Comparison with the lowest bar in the figurE 10W-pass band energy, the zero-crossing rate and a spectral

(the “true” speech pauses) shows that a good speech pauséiaggrtion measure. These are obtained at each frame as dif-

tection is obtained. Although the algorithm wrongly considef€rénces between each parameter and its respective long-term
the time frames around 0.6 s (“p” from “played”), 1.2 s (uthnaverage. The output of the VAD module is either 1 or 0, indi-

from “theater”) and around 1.5 s (*f' from “festival’) as noise,Cating the presence or absence of voice activity, respectively.

these speech parts actually sound very similar to equally shgRveral publications compared their own algorithms with the

segments of the drill noise. Hence, these wrong decisions &t 29 VAD so far [27], [28].

assumed to have no adverse effects on the speech quality wheriSing the G.729 algorithm here as a competitor is motivated
used for noise estimation in a noise reduction algorithm. ~ PY the fact that it has proven being successful in a wide range

Fig. 5 shows an example with restaurant noise, which is n&f conditions and that it is available from the ITU. Comparing a
ther mainly low-frequency nor high-frequency in its charactePOVe! @lgorithm with this “standard” makes it also.co“mparable"
istics. As can be seen at the second and third bar in the figurigsOther algorithms, if these are tested against this “standard.

the speech pause detection, indeed, is sometimes based ofPfHePUrse, the G.729 algorithm was intended to be used in less

low-pass band information and sometimes on the high-pass ISy environments, originally.
formation. In combination, a good speech pause detection PRI

. . Procedure
formance is obtained.

A female reading of a short story (41 s length) from the
German PhonDat database [29] was used to test the perfor-
mance of the proposed algorithm versus the G.729 algorithm.

In 1996 the International Telecommunication Union (ITUYhe speech signal was mixed with a car noise, a multi-talker
“standardized” a voice activity detector (VAD) algorithm for ebabble noise, an aircraft engine noise, and a factory noise,

IV. COMPARISONWITH G.729 VAD ALGORITHM
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Fig. 4. Low-pass band power envelope (upper panel) and high-pass b restaurant noise a¢5 dB SNR (solid curves). The dashed curves display
power envelope (lower panel) of the sentence displayed in Fig. 2 when mixBe, min andEyp, max, respectively. The detected as well as the actual speech
with drilling machine noise a5 dB SNR (solid curves). The dashed curved®@uses are displayed in the additional bars. See text for details.

display Exp, min and Exup, max, respectively. The detected as well as the

actual speech pauses are displayed in the additional bars (see text for details). . . .
G.729 algorithm is recommended by the ITU, it can be taken for

ranted that it works well for clean speech. Note, thatin the com-
g?arative test with the proposed new algorithm this may give an
. . Nt . —advantage for the G.729 algorithm, as it defines the “clean” stan-
SNRs do often occur in real-life situations and especial ard. Hand-labeling of the real speech pauses was not considered

hearing-impaired persons have enormous problems to h%Yﬁce an automatic procedure was much more economical for de-

conversations in noisy environments. Of course, the frequer}%Ymination of even very short pauses

shape of a noise signal has a strong influence on its mas‘k'nq:inally both algorithms are compared in terms of receiver
effect. While the speech reception threshold (i.e., SNR Whe&Eerating; characteristics (ROC)

50% of the speech are intelligible) for some machinery noise
can be very low (for drill noise it is about20 dB; [31]), for B. Results

cafeteria noise, e.g., it may be much higher (abe4idB; [31]) ) o
but still negative. The detection results are shown in Figs. 6 and 7. The upper

False-alarmrates (i.e., the fraction of all real speech frames tRafi€ls show the false-alarm rate, the lower panels present the
were erroneously detected as speech pauses) and hit rates {iilgfate of both algorithms. .
the fraction of all real speech pauses that were correctly detected "€ comparison with the G.729 Annex B algorithm shows
as speech pauses) were determined in each noise conditioriig# the proposed speech pause detection algorithm yields a
both the proposed algorithm and the G.729 algorithm. For the celearly lower false-alarm rate in each of the four different noises
culation of the false-alarm rate as well as the hit rate, the “realjylAccording to Egan [32], the receiver operating characteristic (ROC) is a
speech frames and “real” speech pauses were determined usitigjion which summarizes the possible performances of an observer faced with
the G.729 VAD algorithm on the clean speech signal. Using tH task of detecting a signal in noise. In general, the ROC is given as a plot of
G.729 itself f Kes i id . h - _the hit rate versus the false-alarm rate which is obtained by modifying the deci-

: _'tse asrererence tfa _es Into con_S| eration that no _S'mB criterion. In the present study, the signal to be detected is a “speech pause”
rule exists even for determining pauses in clean speech. Sinceddvarring in a noisy speech signal.

respectively, which were taken from the NOISEX-92 databa
[30]. SNRs from—10 dB to+20 dB were employed. Negative
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Fig. 6. Speech pause detection performance of the proposed algorithm gRfl 7. Speech pause detection performance of the proposed algorithm and the
the G.729 VAD algorithm in car noise and multi-talker babble noise with SNRs.729 VAD algorithm in aircraft engine and factory noise with SNRs ranging
ranging from—10 to+20 dB. The upper panel shows the false-alarm rates afghm — 10 to+20 dB. The upper panel shows the false-alarm rates and the lower
the lower panel shows the hit rates with the respective algorithms. panel shows the hit rates with the respective algorithms.

over the entire range of SNRs that were tested (cf., Figs. 6 a@d’29 algorithm can be examined by comparing them in ROC
7). On the other hand, fewer speech pauses are actually detesfite (in terms of discriminability, i.e., the area under the ROC
than with the G.729 algorithm. curve). Figs. 8-10 show ROC curves of the proposed algorithm

The false-alarm rates are lowest in car noise, followed lsing car noise, babble noise, and aircraft noise, respectively.
the multi-talker babble noise, the factory noise, and the aircrdfhe upper panels were obtained at SNRs-d0 dB; for the
engine noise. However, a principal difference between the &wer panels SNRs of-10 dB were used. The curves were
gorithms is observed: While the proposed algorithm keeps thenerated by varying the threshajdn the decision rule of the
false-alarm rate and the hit rate almost constant with changipgposed algorithm (cf., Section Il) from 1 to 25 dB in 1-dB
SNR, the performance of the G.729 algorithm strongly depensieps.
on the SNR—the lower the SNR, the larger the false-alarm rateSince in all noise conditions the G.729 algorithm falls below
as well as the hit rate. It is striking that the performance of thhe ROC curve of the proposed algorithm, it may be concluded
G.729 algorithm in car noise is rather poor even at moderatet the discriminability is better with the proposed speech pause
noise levels of+20 dB. detection algorithm.

In terms of receiver operating characteristics (ROC), the Additionally, in Fig. 10 (upper panel) the ROC curve was
working point of the G.729 algorithm shifts up and to the rightletermined for the proposed algorithm using a noise-reduced
in ROC space with decreasing SNR, while the working poisignal as input for the speech pause detection (by employing
of the proposed algorithm stays nearly at the same placetlre single-microphone noise reduction algorithm from Ephraim
ROC space. In general, the false-alarm rates can be decreas®tiMalah [1], on a frame-by-frame basis) instead of the noisy
by changing threshold criteria in the algorithm’s decision rulesignal. The detected speech pauses are in turn used to adjust
This is, of course, connected with a decrease of the hit ratédse noise spectrum estimate for the noise reduction. Although
Whether the proposed algorithm is generally “better” than thbis leads to a recursive design of the signal flow, no stability
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Fig. 9. ROC curve of the proposed algorithm using babble noiseladB
Fig. 8. ROC curve of the proposed algorithm using car noiseldt dB SNR  SNR (upper panel) angt10 dB SNR (lower panel). The curve was generated
(upper panel) ang-10 dB SNR (lower panel). The curve was generated blgy varying the thresholg in the decision rule from 1 to 25 dB in 1-dB steps.
varying the thresholg in the decision rule from 1 to 25 dB in 1-dB steps. ForFor comparison, the performance of the G.729 VAD algorithm is also indicated.
comparison, the performance of the G.729 VAD algorithm is also indicated.

roblems were observed for a wide ranae of input sianals ad ction process. In fact, the proposed speech pause detection
gNRs w v Wi 9 input sig Qforithm maintains a low false-alarm rate over a wide range of

SNRs while the hit rate decreases only slightly at poorer SNRs.
Hence, the algorithm keeps a relatively fixed position in ROC
E}ace over a wide range of SNRs. In contrast to the proposed

This modified algorithm is denoted as “Proposed Algo NR
Actually, the discriminability of the speech pause detection
gorithm is further increased by this modification as can be se

. orithm, the algorithm of the ITU Recommendation G.729
atthe larger area underthe ROC curve (cf., Fig. 10, upper pan§ Ids very large false-alarm rates (but also larger hit rates) at

low SNRs.

Obviously, the G.729 was not designed to detect the true

In a noise estimation application for noise reduction algepeech pauses in adverse noise conditions. In conditions where
rithms it is generally proposed to operate the speech patule speechis hardly noticeable, the G.729 VAD algorithm rather
detection at rather low hit rates to keep the false-alarm ratecides to classify this situation as speech-free (i.e., a kind of
low. Large false-alarm rates in the speech pause detection leatbnded speech pause). Since this behavior is inherent in the
to wrong noise spectrum estimates which include significaatlgorithmic design of the G.729 scheme, it cannot be overcome
speech parts and hence cause artifacts in a subsequent noisgyrgtobal changes of its threshold parameters. In a noise reduc-

C. Discussion
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noises. If the noise is strongly fluctuating in its characteristics
between speech pauses, a noise estimate determined only when
speech is absent is not sufficient to ensure effective noise re-
duction. For such conditions, noise reduction schemes have to
be employed which exploit other features (for example separa-
tion in space between noise and target source [33]), or a running
noise estimate has to be determined from the noisy signal and
not only during speech pauses.

Apart from that, low hit rates in the proposed algorithm do not
necessarily mean that some speech pause intervals are not de-
tected at all, but rather that several frardesing speech pauses
are not detected as such (see for example Fig. 3). For the ad-
justment of a noise spectrum estimate, the proposed algorithm
can hence be employed at rather low hit rates to obtain low
false-alarm rates and still detects at least some frames during
most speech pauses. The proposed algorithm has successfully
been employed in several experiments with single-microphone
noise reduction algorithms [31].

It might seem strange that the false-alarm rates of the pro-
posed algorithm increase slightly foetter SNRs, but this is
due to the fact that the G.729 defines the clean reference. Very
soft consonant parts (with insignificant low energy) are classi-
fied as speech pause by the proposed algorithm. However, these
parts are classified as speech by the G.729 algorithm.

V. CONCLUSIONS

The proposed speech pause detection algorithm maintains a
low and approximately constant false-alarm rate over a wide
range of SNRs. The hit rate decreases only slightly at poorer
SNRs.

Since the proposed speech pause detection algorithm was
shown to be superior to the G.729 VAD algorithm in terms
of discriminability (area under the ROC curve) in speech with
noise, it should be preferred in applications where noise distur-
bances may occur.

The performance can be further enhanced if the algorithm
is combined with the single-microphone noise reduction algo-
rithm proposed by Ephraim and Malah [1] and the noise reduced
signal is employed for the speech pause detection.

d The relatively low complexity of the algorithm should allow
an immediate application in, for example, digital hearing aids

For comparison, the performance of the G.729 VAD algorithm is also indicatedt cellular phones. The delay time due to the signal processing

is below 10 ms.

tion application, this behavior probably makes it impossible for

a noise reduction algorithm to “retrieve” the speech signal, if the
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