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Speech Pause Detection for Noise Spectrum
Estimation by Tracking Power Envelope Dynamics

Mark Marzinzik and Birger Kollmeier

Abstract—A speech pause detection algorithm is an important
and sensitive part of most single-microphone noise reduction
schemes for enhancement of speech signals corrupted by additive
noise as an estimate of the background noise is usually deter-
mined when speech is absent. An algorithm is proposed which
detects speech pauses by adaptively tracking minima in a noisy
signal’s power envelope both for the broadband signal and for
the high-pass and low-pass filtered signal. In poor signal-to-noise
ratios (SNRs), the proposed algorithm maintains a low false-alarm
rate in the detection of speech pauses while the standardized
algorithm of ITU G.729 shows an increasing false-alarm rate
in unfavorable situations. These characteristics are found with
different types of noise and indicate that the proposed algorithm
is better suited to be used for noise estimation in noise reduction
algorithms, as speech deteriorations may thus be kept at a low
level. It is shown that in connection with the Ephraim–Malah noise
reduction scheme [1], the speech pause detection performance
can even be further increased by using the noise-reduced signal
instead of the noisy signal as input for the speech pause decision
unit.

Index Terms—Envelope dynamics, envelope minima, noise esti-
mation, noise reduction, speech pause detection.

I. INTRODUCTION

NEW technologies in mobile telecommunication, robust
speech recognition and digital hearing aids are a strongly

driving force in the development of real-time noise reduction
algorithms. The number of publications on single-microphone
noise reduction algorithms indicates an unbroken interest
in this research field over the past two or three decades. A
crucial point for these kind of algorithms is the concurrent
estimate of the target speech spectrum and the interfering noise
spectrum in particular. Since most realistic noisy environments
are characterized by nonstationarity, it is necessary to update
the noise spectrum estimate as often as possible to maintain
an effective noise reduction. This can be done, for example
whenever target speech is absent, which means that the input
signal consists of noise only. Another constraint is the limited
complexity of the algorithm when it is supposed to become
implemented in digital circuits. Hence, computational and
memory requirements should be as low as possible.

Different algorithms have been proposed whichcontinuously
update the noise estimate and hence avoid the need for explicit
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speech pause detection. Martin [2], [3] uses the minimum of the
sub-band signalpower within a timewindow ofabout 1sas anes-
timateofthenoisepower intherespectivesub-band.This ideawas
already formulated by Paul [4]. Doblinger [5] proposed a contin-
uous noise estimation scheme similar to Martin’s which is com-
putationally more efficient. This scheme was, however, not sys-
tematically tested. Hirsch [6] and Hirsch and Ehrlicher [7] pro-
posedanalgorithmwhichisbasedontheobservationthat themost
commonly occurring spectral magnitude value in clean speech is
zero. Hence, having noisy speech their algorithm measures the
distribution density function of the spectral magnitude and deter-
mines the maxima which are then used as an estimate of the re-
spective noise magnitude. These kind of algorithms which avoid
speech pause detection for noise estimation are supposed to cope
better with nonstationary (i.e., fluctuating) noise, since they are
generally faster in their adaptation to changing noise levels even
during speech activity. On the other hand, the continuous update
of the noise estimate (independently in the sub-bands) is suscep-
tible to erroneously capture speech energy. This, however, leads
inevitably tospeechdeterioration inasubsequentnoise reduction
process. Fischer and Stahl [8] investigated a spectral subtraction
noise reduction algorithm with a continuous noise spectrum up-
dating scheme. They found that the corruption of the noise esti-
mate by speech is too large to be further considered and conclude
that voice activitydetection plays an important roleand cannot be
fully omitted. Recently, Nemeret al.[9] proposed to use the kur-
tosis (fourth-order statistics) of the noisy signal to continuously
estimatespeechandnoiseenergies.Theexamplespresentedused
noisy speech signals with positive signal-to-noise ratios (SNRs)
and yield promising results, but further research is required to ex-
tend these results to negative SNRs and different classes of noise,
respectively.

Mostauthorsreportingonnoisereductionrefer tospeechpause
detection when dealing with the problem of noise estimation. As
Hirsch [6] pointed out, “this is a very difficult and ultimately un-
solvedproblemfor realisticsituationswithavaryingnoise level.”
A lot of studies thus evade the problem by using an ideal speech
pause detection using the clean speech signal or by using only
short test signals with an initial noise-only period for noise esti-
mationwithout theneedforupdatingthenoisespectrumestimate.
Insomeapplications likeaudiorestoration(e.g., restorationofold
gramophone recordings) the noise estimation indeed can often be
done “manually” off-line. However, other applications like noise
reduction for mobile communication and for digital hearing aids
require automatic updating of the noise spectrum estimate. Most
authorsagreethatvoiceactivityorspeechpausedetectors,respec-
tively,areaverysensitiveandoftenlimitingpartofsystemsfor the
reduction of additive noise in speech [10], [11].
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Various procedures for speech pause detection have been
described in the literature so far. Kang and Fransen [12] proposed
a very simple scheme. Whenever the low-pass band energy (in
the frequency range from 0 to 1 kHz) of a current signal frame
is below a specific fraction of the low-pass band dynamic range
as scanned in the past frames, the frame is used for updating the
noise spectrum estimate. Obviously, this procedure has strong
limitations. It will only work with higher SNRs and will fail
in noises with prominently low frequencies. A more elaborate
algorithm using adaptive energy thresholds was proposed by
van Gerven and Xie [13]. Elberlinget al.[14] used the so-called
synchro method for spectral estimation of the background noise.
This procedure makes use of the specific characteristic of voiced
speech sounds, i.e., that the energy is confined to pitch-harmonic
frequencies. Based on successive multiplication of the envelopes
from neighboring pairs of band-pass signals, followed by a sum-
mation over all resulting signal-products, a global measure of
energy synchronization is obtained which is then used to classify
the timeframesof the inputsignal into thosedominatedbyspeech
(high synchronization) and those not dominated by speech (low
synchronization). This patent application is reported to work
successfully in SNRs ranging from9 to 9 dB with various
noises. However, an increase of wrong speech pause decisions
with decreasing SNR is reported. Sheikhzadehet al. [15] pro-
posed a pause detection algorithm based on an auto-correlation
voicing detection which was performed on the enhanced signal
(i.e., after the noise reduction rather than on the noisy signal).
Although extensive testing is mentioned, no performance results
are presented. However, the authors state that the algorithm
is not supposed to work well below SNRs of 0 dB. Dendrinos
and Bakamidis [10] presented an algorithm for determining the
starting and ending points of speech segments in colored-noise
environments through singular value decomposition based on
some thresholds which have been determined experimentally.
Good performance was proved for SNRs higher than 0 dB.
However, the complexity of the algorithm makes a real-time
implementation difficult. Recently, El-Maleh and Kabal [16]
performed a comparative study of three voice activity detection
(VAD) algorithms: a VAD used in the GSM cellular system [17],
the VAD used in the enhanced variable rate codec (EVRC) of
the North American CDMA-based PCS and cellular systems
[18], and a third-order statistics based VAD [19]. Unfortunately,
the authors did not investigate false-alarm rates and hit rates
systematically but present only some noisy waveforms with the
respective VAD decisions. However, the EVRC VAD is reported
to show consistent superiority over the other VADs. Davídek
et al.[20] implemented a speech activity detector using cepstral
coefficients for use in a real-time noise cancellation system.
However, a comprehensive evaluation of the detector itself is not
given.Abdallahetal.[21] introduceda localentropiccriterion for
speech signal detection. Very good performance down to SNRs
of 20 dB is reported. However, only white noise was tested so
far. McKinley and Whipple [22] suggested a model based speech
pause detection algorithm which is claimed to be robust for low
SNRs. The speech pause detection problem is formulated into a
decision theory framework. However, this algorithm requires ex-
tensive training of a Hidden Markov Model with the set of speech
prototypes to be encountered. Itoh and Mizushima [23] proposed

a speech/nonspeech identification based on four different pa-
rameters. The first is the maximum value of the auto-correlation
function of the LPC residual signal, which represents the degree
of the periodicity of the signal waveform. Second is a spectral
slope parameter, third is a reflection coefficient which itself is
computed from some PARCOR coefficients, and fourth is the
signal energy. For each of the parameters, Itoh and Mizushima
used empirically determined thresholds for a speech/stationary
noise/nonstationary noise decision. It seems, however, that the
decision for nonstationary noise is made only on the basis of the
spectral slope parameter. Unfortunately, the proposed algorithm
was not tested in low SNR situations.

Irrespective of the actual kind of speech pause detector used,
a comprehensive and fair evaluation should include its hit rate
as well as its false-alarm rate using different noises with a large
variety of SNRs. These measures reveal most of an algorithm’s
capabilities and deficiencies. For an application in noise reduc-
tion, the problem is that a speech pause detection algorithm with
a high false-alarm rate results in remarkably deteriorated speech
after the noise reduction. On the other hand, a speech pause de-
tection algorithm that finds too few of the actual speech pauses
results in worse reduction of the noise. Hence, noise estimation
is a very sensitive stage in the noise reduction process.

The algorithm for speech pause detection that will be de-
scribed in the next section dynamically tracks the dynamics of
the signal’s temporal power envelope as well as of its low- and
high-pass frequency band power envelopes. After a number of
threshold comparisons, a frame-by-frame decision is made on
the presence of a speech pause. This approach was motivated by
the work of Festenet al.[24], who used the minima in the signal
envelope for estimating the noise level in a speech-plus-noise
signal to control an AGC (automatic gain control) algorithm for
hearing aids. The proposed algorithm can be regarded as an ex-
tension of the simple scheme proposed by Kang and Fransen
[12]. In order to assess its applicability to real-time noise reduc-
tion for practical applications (see above), both the hit rate and
false-alarm rate are evaluated for a large range of SNRs and dif-
ferent types of noise and compared to a voice activity detector
(VAD) algorithm recommended by the International Telecom-
munication Union [25].

II. A LGORITHM

The speech pause detection algorithm calculates the signal’s
temporal power envelope by summing up the squares of
the spectral components of the input signal in each short-time
frame

(1)

Here, denotes the spectral component of the noisy
input signal at frequency at time frame . In addition, a
low-pass band power envelope and a high-pass band power en-
velope are calculated:

(2)

(3)
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where runs over all spectral components up to the cut-off fre-
quency, and runs over the remaining spectral components. In
ordertoslightlysmooththeenvelopes, , and
are averaged over a few frames by a recursive low-pass filter of
first order with a release time constant; no smoothing is per-
formed in case of an increase in energy (i.e., attack time zero) to
avoid smearing over onsets. The algorithm tracks the minimum
value and the maximum value of each envelope and uses these for
the speech pause decision as described by the following scheme.

1) After an assumed 200 ms initial phase of noise only the
minimum and maximum values are set as follows:

(4)

This guarantees that the minimum envelope values corre-
spond roughly with the noise energy at the beginning.

2) The minimum and maximum values are updated for each
of the three envelopes in the following manner.

• If the current envelope value is larger than the max-
imum value for the corresponding envelope, then
the maximum value is set to the current value. Oth-
erwise, the maximum value slowly decays. This is
done by a recursive low-pass filter of first order with
a release time constant , which takes as input
the current envelope value.

• If the current envelope value is smaller than the min-
imum value for the corresponding envelope, then
the minimum value is set to the current value. Oth-
erwise, the minimum value is slowly raised. This is
done by a recursive low-pass filter of first order with
attack time constant , which takes as input the
current envelope value.

3) The differences between the maximum and the minimum
values are calculated for each envelope

(5)

4) Three different criteria are introduced of which only one
has to be true for making the decision that target speech is
not present in the actual frame: a) the speech pause deci-
sion can be made because of a low signal dynamics in both
the low-pass and the high-pass band (Dyn Speech Pause);
b) the decision can be based on the low-pass band infor-
mation (LP Speech Pause); and c) it can be made upon
the high-band information (HP Speech Pause). These de-
cision criteria are derived as follows.

a) If is smaller than some thresholdand also
then it is assumed that only noise is

present due to the very small dynamic range of the
signal ( Dyn Speech Pause).

b) If a) is not true, it is checked whether is
bigger than (otherwise the dynamic range in
the low-pass band is very small and it should

not receive too much attention no LP Speech
Pause). Now, if the difference between the current

and of the low-pass band
envelope is smaller than some fractionof
(which means that the actual envelope is near its
minimum), a closer look at the high-pass band is
necessary to support a speech pause decision.

Case 1) of the high-pass band is smaller
than threshold .

In this case no additional informa-
tion can be obtained from the high-pass
band because of its small dynamic
range. Now, if at least (the signal’s
envelope) lies in the lower half of its
dynamic range [i.e., in the lower half
between and ] the
current frame can be assumed to be
a speech pause because of the close-
ness of the low-pass band energy to its
minimum value ( LP Speech Pause)
otherwise, however, there is not enough
support for a speech pause decision (
no LP Speech Pause).

Case 2) is bigger than two times the
threshold .

In this case, there is enough dynamic
range to pay attention to the high-pass
band. Thus, it is demanded that the
difference between the current
and of the high-pass en-
velope is smaller than two times the
fraction of to support the small
envelope value in the low-pass band.
Then a noise-only frame is assumed (
LP Speech Pause). This demand is not
as strict as that for the low-pass band, to
account for the case that the disturbing
noise has a rather high-frequency char-
acteristic. But if this condition is not
fulfilled, speech may be present in the
actual frame ( no LP Speech Pause).

Case 3) is smaller than two times the
threshold , but bigger than .

In this case, which is not as clear
as Case 2, it is only demanded that

(the high-pass envelope) lies in
the lower half of its dynamic range to
support the small envelope value in the
low-pass band. Then it is assumed that
target speech is absent (LP Speech
Pause). However, if this condition is not
fulfilled, speech may be present in the
actual frame ( no LP Speech Pause).

c) Condition b) accounts for the case that the dis-
turbing noise has a rather high-frequency charac-
teristic, hence the speech pause decision should
mainly be made upon the information in the
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Fig. 1. Flowchart of the proposed speech pause detection algorithm operating
on a single time frame. See text for details.

low-pass band. To account also for the case that
it has a rather low-frequency characteristic, the
same conditions as under condition b) have to be
checked but now with reverse roles of the low-pass
and the high-pass bands to determine whether
target speech is absent (HP Speech Pause).

Fig. 1 gives a flowchart of the proposed speech pause detec-
tion algorithm. The flowchart is not fully symmetrical with re-
spect to LP and HP speech pause detection since several redun-
dant tests are omitted.

Due to its flexible design this novel approach for speech pause
detection can easily be adjusted to obtain a rather low false-
alarm rate by adapting the main parametersand . Generally,
a low false-alarm rate is desirable to reduce speech distortions
in the subsequent noise reduction process. However, this also
results in a reduced hit rate.

During the development of the algorithm noisy signals gener-
ated from various different noise types and speech signals at sev-
eral SNRs were used for performance verification. Finally, the
following values were chosen for the free parameters: The input
signal was digitized with a sampling frequency of 22 050 Hz and
partitioned in Hann-windowed segments of length 8 ms with
4 ms overlap. These segments were padded with zeros and a
256-point FFT was performed. This framework is compatible
with most single-microphone noise reduction algorithms which
can thus easily be integrated. Such short segments are motivated
by the fact that then the same signal analysis and synthesis as
necessary for a real-time noise reduction environment can be
used. Due to the longer signal delay, longer window lengths in
real-time signal processing applications would cause problems
with lip reading and would cause stuttering when speaking. The
cut-off frequency between low-pass and high-pass band was set
to 2 kHz, motivated by the fact that excluding speech frequen-
cies above 1.9 kHz has a roughly similar effect on speech intelli-
gibility as excluding those below this value [26]. The time con-
stant for the envelope smoothing was set to 32 ms. The time
constants and were both set to 3 s. These constants
were determined by examination of the envelopes from several
speech samples. With these settings a good approximation to the
actual dynamic range of the signal and of its “placement” in the
level area under a variety of conditions was achieved. However,
systematic variations of these parameters were not investigated.
The threshold was set to 5 dB and the fractionwas set to 0.1.

III. EXAMPLES

To illustrate the speech pause detection scheme, Figs. 3–5
show some detection examples using a target sentence of ap-
proximately 5 s length mixed with different noises (digitally
added).

Fig. 3 shows an example with car noise. This type of noise
was recorded in the cabin of a driving car and has dominant parts
in the low frequency range. The bar at the bottom of the panels
shows the real speech pauses which were determined manually.
[For comparison, the waveform of the clean sentence is dis-
played in Fig. 2 (upper panel); the lower panel shows the mixed
signal with a SNR of 5 dB.] The speech pause decisions of
the algorithm are displayed in the other bottom three bars. The
distinct bars give additional information about the reason for the
speech pause decision. The first bar shows a symbol whenever
a speech pause is detected due to a small dynamic range of the
signal in the low-pass band as well as in the high-pass band, and
generally in the initial noise estimation phase (the first 200 ms).
The second bar shows a symbol whenever a speech pause is de-
tected on the basis of the low-pass band information. Finally, a
symbol in the third bar means that the decision was based on the
high-pass band information.

The car noise example shows that it is worthwhile to consider
band-limited envelopes. In this case, the signal’s low-pass band
envelope (as well as its broadband envelope) are strongly dis-
turbed by the noise. However, the high-pass envelope is “clean
enough” for obtaining reliable speech pause decisions (Fig. 3).
Actually, the third bar in the figure panels shows that the deci-
sion is mainly based on the high-pass information.
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Fig. 2. Upper panel: Waveform of the sentence “I played in a theater festival,
honoring the German writer Heiner Müller.” Lower panel: Sentence mixed with
car noise at�5 dB SNR.

Fig. 4 shows an example, where the sentence is mixed with
the noise of a drilling machine at5 dB SNR. This noise makes
it impossible to get reliable speech pause information from the
high-pass channel, but in this case the low-pass band informa-
tion can be used. Comparison with the lowest bar in the figures
(the “true” speech pauses) shows that a good speech pause de-
tection is obtained. Although the algorithm wrongly considers
the time frames around 0.6 s (“p” from “played”), 1.2 s (“th”
from “theater”) and around 1.5 s (“f” from “festival”) as noise,
these speech parts actually sound very similar to equally short
segments of the drill noise. Hence, these wrong decisions are
assumed to have no adverse effects on the speech quality when
used for noise estimation in a noise reduction algorithm.

Fig. 5 shows an example with restaurant noise, which is nei-
ther mainly low-frequency nor high-frequency in its character-
istics. As can be seen at the second and third bar in the figures,
the speech pause detection, indeed, is sometimes based on the
low-pass band information and sometimes on the high-pass in-
formation. In combination, a good speech pause detection per-
formance is obtained.

IV. COMPARISONWITH G.729 VAD ALGORITHM

In 1996 the International Telecommunication Union (ITU)
“standardized” a voice activity detector (VAD) algorithm for a

Fig. 3. Low-pass band power envelope (upper panel) and high-pass band
power envelope (lower panel) of the sentence displayed in Fig. 2 when mixed
with car noise at�5 dB SNR (solid curves). The dashed curves display
E andE , respectively. The detected as well as the actual speech
pauses are displayed in the additional bars (see text for details).

speech coding scheme as its Recommendation G.729 Annex B
[25]. The VAD algorithm makes a voice activity decision every
10 ms based on differential parameters of the full-band energy,
the low-pass band energy, the zero-crossing rate and a spectral
distortion measure. These are obtained at each frame as dif-
ferences between each parameter and its respective long-term
average. The output of the VAD module is either 1 or 0, indi-
cating the presence or absence of voice activity, respectively.
Several publications compared their own algorithms with the
G.729 VAD so far [27], [28].

Using the G.729 algorithm here as a competitor is motivated
by the fact that it has proven being successful in a wide range
of conditions and that it is available from the ITU. Comparing a
novel algorithm with this “standard” makes it also comparable
to other algorithms, if these are tested against this “standard.”
Of course, the G.729 algorithm was intended to be used in less
noisy environments, originally.

A. Procedure

A female reading of a short story (41 s length) from the
German PhonDat database [29] was used to test the perfor-
mance of the proposed algorithm versus the G.729 algorithm.
The speech signal was mixed with a car noise, a multi-talker
babble noise, an aircraft engine noise, and a factory noise,
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Fig. 4. Low-pass band power envelope (upper panel) and high-pass band
power envelope (lower panel) of the sentence displayed in Fig. 2 when mixed
with drilling machine noise at+5 dB SNR (solid curves). The dashed curves
displayE andE , respectively. The detected as well as the
actual speech pauses are displayed in the additional bars (see text for details).

respectively, which were taken from the NOISEX-92 database
[30]. SNRs from 10 dB to 20 dB were employed. Negative
SNRs do often occur in real-life situations and especially
hearing-impaired persons have enormous problems to have
conversations in noisy environments. Of course, the frequency
shape of a noise signal has a strong influence on its masking
effect. While the speech reception threshold (i.e., SNR where
50% of the speech are intelligible) for some machinery noises
can be very low (for drill noise it is about 20 dB; [31]), for
cafeteria noise, e.g., it may be much higher (about4 dB; [31])
but still negative.

False-alarmrates(i.e., the fractionofall realspeechframesthat
were erroneously detected as speech pauses) and hit rates (i.e.,
the fraction of all real speech pauses that were correctly detected
as speech pauses) were determined in each noise condition for
both theproposedalgorithmand theG.729algorithm.For thecal-
culation of the false-alarm rate as well as the hit rate, the “real”
speech frames and “real” speech pauses were determined using
the G.729 VAD algorithm on the clean speech signal. Using the
G.729 itself as reference takes into consideration that no simple
rule exists even for determining pauses in clean speech. Since the

Fig. 5. Low-pass band power envelope (upper panel) and high-pass band
power envelope (lower panel) of the sentence displayed in Fig. 2 when mixed
with restaurant noise at+5 dB SNR (solid curves). The dashed curves display
E andE , respectively. The detected as well as the actual speech
pauses are displayed in the additional bars. See text for details.

G.729 algorithm is recommended by the ITU, it can be taken for
granted that it works well for clean speech. Note, that in the com-
parative test with the proposed new algorithm this may give an
advantage for the G.729 algorithm, as it defines the “clean” stan-
dard. Hand-labeling of the real speech pauses was not considered
since an automatic procedure was much more economical for de-
termination of even very short pauses.

Finally, both algorithms are compared in terms of receiver
operating characteristics (ROC).1

B. Results

The detection results are shown in Figs. 6 and 7. The upper
panels show the false-alarm rate, the lower panels present the
hit rate of both algorithms.

The comparison with the G.729 Annex B algorithm shows
that the proposed speech pause detection algorithm yields a
clearly lower false-alarm rate in each of the four different noises

1According to Egan [32], the receiver operating characteristic (ROC) is a
function which summarizes the possible performances of an observer faced with
the task of detecting a signal in noise. In general, the ROC is given as a plot of
the hit rate versus the false-alarm rate which is obtained by modifying the deci-
sion criterion. In the present study, the signal to be detected is a “speech pause”
occurring in a noisy speech signal.
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Fig. 6. Speech pause detection performance of the proposed algorithm and
the G.729 VAD algorithm in car noise and multi-talker babble noise with SNRs
ranging from�10 to+20 dB. The upper panel shows the false-alarm rates and
the lower panel shows the hit rates with the respective algorithms.

over the entire range of SNRs that were tested (cf., Figs. 6 and
7). On the other hand, fewer speech pauses are actually detected
than with the G.729 algorithm.

The false-alarm rates are lowest in car noise, followed by
the multi-talker babble noise, the factory noise, and the aircraft
engine noise. However, a principal difference between the al-
gorithms is observed: While the proposed algorithm keeps the
false-alarm rate and the hit rate almost constant with changing
SNR, the performance of the G.729 algorithm strongly depends
on the SNR—the lower the SNR, the larger the false-alarm rate
as well as the hit rate. It is striking that the performance of the
G.729 algorithm in car noise is rather poor even at moderate
noise levels of 20 dB.

In terms of receiver operating characteristics (ROC), the
working point of the G.729 algorithm shifts up and to the right
in ROC space with decreasing SNR, while the working point
of the proposed algorithm stays nearly at the same place in
ROC space. In general, the false-alarm rates can be decreased
by changing threshold criteria in the algorithm’s decision rules.
This is, of course, connected with a decrease of the hit rates.
Whether the proposed algorithm is generally “better” than the

Fig. 7. Speech pause detection performance of the proposed algorithm and the
G.729 VAD algorithm in aircraft engine and factory noise with SNRs ranging
from�10 to+20 dB. The upper panel shows the false-alarm rates and the lower
panel shows the hit rates with the respective algorithms.

G.729 algorithm can be examined by comparing them in ROC
space (in terms of discriminability, i.e., the area under the ROC
curve). Figs. 8–10 show ROC curves of the proposed algorithm
using car noise, babble noise, and aircraft noise, respectively.
The upper panels were obtained at SNRs of10 dB; for the
lower panels SNRs of 10 dB were used. The curves were
generated by varying the thresholdin the decision rule of the
proposed algorithm (cf., Section II) from 1 to 25 dB in 1-dB
steps.

Since in all noise conditions the G.729 algorithm falls below
the ROC curve of the proposed algorithm, it may be concluded
that the discriminability is better with the proposed speech pause
detection algorithm.

Additionally, in Fig. 10 (upper panel) the ROC curve was
determined for the proposed algorithm using a noise-reduced
signal as input for the speech pause detection (by employing
the single-microphone noise reduction algorithm from Ephraim
and Malah [1], on a frame-by-frame basis) instead of the noisy
signal. The detected speech pauses are in turn used to adjust
the noise spectrum estimate for the noise reduction. Although
this leads to a recursive design of the signal flow, no stability
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Fig. 8. ROC curve of the proposed algorithm using car noise at�10 dB SNR
(upper panel) and+10 dB SNR (lower panel). The curve was generated by
varying the threshold� in the decision rule from 1 to 25 dB in 1-dB steps. For
comparison, the performance of the G.729 VAD algorithm is also indicated.

problems were observed for a wide range of input signals and
SNRs.

This modified algorithm is denoted as “Proposed Algo NR.”
Actually, the discriminability of the speech pause detection al-
gorithm is further increased by this modification as can be seen
at the larger area under the ROC curve (cf., Fig. 10, upper panel).

C. Discussion

In a noise estimation application for noise reduction algo-
rithms it is generally proposed to operate the speech pause
detection at rather low hit rates to keep the false-alarm rate
low. Large false-alarm rates in the speech pause detection lead
to wrong noise spectrum estimates which include significant
speech parts and hence cause artifacts in a subsequent noise re-

Fig. 9. ROC curve of the proposed algorithm using babble noise at�10 dB
SNR (upper panel) and+10 dB SNR (lower panel). The curve was generated
by varying the threshold� in the decision rule from 1 to 25 dB in 1-dB steps.
For comparison, the performance of the G.729 VAD algorithm is also indicated.

duction process. In fact, the proposed speech pause detection
algorithm maintains a low false-alarm rate over a wide range of
SNRs while the hit rate decreases only slightly at poorer SNRs.
Hence, the algorithm keeps a relatively fixed position in ROC
space over a wide range of SNRs. In contrast to the proposed
algorithm, the algorithm of the ITU Recommendation G.729
yields very large false-alarm rates (but also larger hit rates) at
low SNRs.

Obviously, the G.729 was not designed to detect the true
speech pauses in adverse noise conditions. In conditions where
the speech is hardly noticeable, the G.729 VAD algorithm rather
decides to classify this situation as speech-free (i.e., a kind of
extended speech pause). Since this behavior is inherent in the
algorithmic design of the G.729 scheme, it cannot be overcome
by global changes of its threshold parameters. In a noise reduc-
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Fig. 10. ROC curve of the proposed algorithm using aircraft noise at�10 dB
SNR (upper panel) and+10 dB SNR (lower panel). The curve was generated
by varying the threshold� in the decision rule from 1 to 25 dB in 1-dB steps.
For comparison, the performance of the G.729 VAD algorithm is also indicated.

tion application, this behavior probably makes it impossible for
a noise reduction algorithm to “retrieve” the speech signal, if the
whole signal is classified as noise. As the proposed algorithm
detects speech pauses by tracking envelope minima, its behavior
at very poor SNRs differs here. It still decides for speech pauses
only when energy minima occur.

The threshold parameters in the proposed speech pause de-
tection algorithm were determined empirically to obtain low
false-alarm rates for a wide range of input signals and SNRs.
By this, speech deteriorations due to wrong noise spectrum es-
timates (i.e., including speech energy) in any subsequent noise
reduction processing are minimized. However, low false-alarm
rates are connected with lower hit rates which could also lead
to signal deteriorations for certain types of strongly fluctuating

noises. If the noise is strongly fluctuating in its characteristics
between speech pauses, a noise estimate determined only when
speech is absent is not sufficient to ensure effective noise re-
duction. For such conditions, noise reduction schemes have to
be employed which exploit other features (for example separa-
tion in space between noise and target source [33]), or a running
noise estimate has to be determined from the noisy signal and
not only during speech pauses.

Apart from that, low hit rates in the proposed algorithm do not
necessarily mean that some speech pause intervals are not de-
tected at all, but rather that several framesduringspeech pauses
are not detected as such (see for example Fig. 3). For the ad-
justment of a noise spectrum estimate, the proposed algorithm
can hence be employed at rather low hit rates to obtain low
false-alarm rates and still detects at least some frames during
most speech pauses. The proposed algorithm has successfully
been employed in several experiments with single-microphone
noise reduction algorithms [31].

It might seem strange that the false-alarm rates of the pro-
posed algorithm increase slightly forbetter SNRs, but this is
due to the fact that the G.729 defines the clean reference. Very
soft consonant parts (with insignificant low energy) are classi-
fied as speech pause by the proposed algorithm. However, these
parts are classified as speech by the G.729 algorithm.

V. CONCLUSIONS

The proposed speech pause detection algorithm maintains a
low and approximately constant false-alarm rate over a wide
range of SNRs. The hit rate decreases only slightly at poorer
SNRs.

Since the proposed speech pause detection algorithm was
shown to be superior to the G.729 VAD algorithm in terms
of discriminability (area under the ROC curve) in speech with
noise, it should be preferred in applications where noise distur-
bances may occur.

The performance can be further enhanced if the algorithm
is combined with the single-microphone noise reduction algo-
rithm proposed by Ephraim and Malah [1] and the noise reduced
signal is employed for the speech pause detection.

The relatively low complexity of the algorithm should allow
an immediate application in, for example, digital hearing aids
or cellular phones. The delay time due to the signal processing
is below 10 ms.
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