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1 Introduction 
 
This lecture does not deal with the physics of computers but is rather about how to solve physical problems by 
means of computers. Nowadays, computers play an important part as tools in experimental physics as well as in 
theoretical physics. Special fields of use are: 
 
1. Data logging 
2. Systems control 
3. Data processing (calculation of functions, visualization) 
4. Transformation of theoretical models on the computer 
 
Data logging and systems control cannot be done by hand and eye any longer and the aid of fast computers is 
required for most experiments. Data processing enables large quantities of data to be analyzed and replaces 
generations of ”human computers“, who were forced to calculate functional values from tables and to draw 
diagrams by hand. Using computers for modeling is certainly the most complex way of employing computers in 
physics, which is always necessary when analytical (mathematical) solutions do not exist. The three-body 
problem, the nonlinear (physical) pendulum as well as solving the Schrödinger equation for complex atoms are 
such examples. In these cases numerical methods are applied on a computer which seek the (approximate) 
solution by calculating numbers according to simple recurrent rules (algorithms)1. The validity of such 
numerical solutions and the applied numerical methods must always be examined very closely and it is advisable 
to be suspicious about the results obtained in this way. This can be summarized in one sentence: It is insight not 
numbers that we are interested in. 
 
The objective of the lecture is to understand the fundamentals of these applications, especially points 3 and 4, by 
means of simple examples and to acquire practical skills which can be applied or extended to concrete problems 
later on. Even if the tasks are sometimes very complex: In the end it is always a matter of ’merely’ calculating 
numbers according to simple rules. 

1.1 Definition: Computer physics 
The term ”computer physics” is to be defined on a mathematical basis: 
 
1. Mathematics (e.g. analysis) 
• is concerned with relatively abstract terms and uses symbols rather than numbers (numbers being also 

symbols which are, however, described as an abstract quantity, e.g. group of natural numbers) 
• Solutions are always analytical, i.e. determined with arbitrary precision in principle; exceptions from this 

rule are dealt with theoretically (e.g. singularities) 
• If analytical solutions are not known, proofs of existence or non-existence are investigated 

 
2. Numerical mathematics 
• deals with the calculation of numbers according to simple recurrent rules (algorithms) 
• deals with questions of principle regarding the computability of numbers (convergence orders) 
• Validation of algorithms on the basis of error estimates 

 
3. Numerical mathematics on a computer 
• Numerical mathematics + (unknown) loss of precision (e.g. by finite computational accuracy) 

 
4. Computer physics 
• Application of 3. to physical problems 
• Additional possibility of validating algorithms on the basis of physical boundary conditions

                                                           
1 Of course, the computer also helps to find analytical solutions; however, the respective computer algebra 
programs (e.g. Maple or Mathematica) are based on the knowledge of the programmers, i.e. they do not find 
solutions which are unknown in principle to the programmers. 
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2 Matlab – first steps 
 
Matlab is a special program for numerical mathematics and is used throughout this course. It is easy to use and 
allows us to rapidly enter the world of Numerics. Matlab is a very good complement to the known programs of 
symbolic (analytical) mathematics (Maple, Mathematica) and is applied when no consistent analytical solutions 
can be found for a problem. The fundamental data structure of Matlab are two-dimensional matrices (hence the 
name: MATrix LABoratory). Matlab can carry out mathematical calculations in a syntax similar to that of C and 
FORTRAN, respectively. It comprises all fundamental mathematical functions as well as special functions 
(Bessel etc.). The essential algorithms known from numerical mathematics (solution of linear systems of 
equations, eigenvalues/eigenvectors, differential equations etc.) have been implemented. Additionally, the 
program includes options for graphically representing functions and data sets. It can generate two-dimensional 
xy plots, plots in polar coordinates as well as two-dimensional representations. So-called toolboxes with further 
functions are available for special applications (image processing, signal processing), which are not contained in 
the standard package. 
 
The following table shows the advantages and disadvantages of Matlab compared to programming languages 
such as C or Fortran: 
 
Advantages Disadvantages 
fast program development possibly slower execution as compared to optimized 

C programs 
very good graphic options  
many important algorithms implemented  
portable programming (Linux, Windows)  

 
Matlab version 6.x including a toolbox for signal processing is available in the CIP room of the Physics 
Department and other public computer rooms on the campus. Since Matlab is licensed, it may not be transferred 
to other computers! A login for the Windows network of the computing center of the university is required for 
using Matlab (for details see: http://www.physik.uni-oldenburg.de/docs/cip/start.html) 
 
In the following the fundamental structure of Matlab as well as the most important commands are explained. 
Further below you will find some exercises, which will help you to practice Matlab. 
 

2.1 Using Matlab 
 
Upon selection of Matlab there appears a command line editor into which commands can be written, which are 
executed by the program when the Return key (↵) has been pressed. Command lines executed before can be 
recalled using the arrow keys (↑↓). Writing an initial and pressing the arrow keys produces only those previous 
commands starting with that letter (or group of letters). The command line can be edited as known from text 
processing programs (marking symbols/words with the mouse, replacing and inserting symbols/words etc.). 
 
Matlab searches for the commands written in the command line in the directories stated in the path. With the 
command “addpath” the path can be extended, if, for example, your personal directory with your own 
commands is to be added to the path. 
 
The command diary file name enables Matlab to remember all commands as well as the “answers” given by 
Matlab in the stated file. Thus, the sequence of commands and results can be traced back afterwards. 
 
Matlab stores the names and values of all variables generated during program execution in the so-called  
“workspace“. With the commands save and load the workspace can be stored into a file and loaded 
(reconstructed again later on to continue the task. With the command clear the variables in the workspace can 
be deleted. The commands can be restricted to variable names by attaching variable names. For example, the 
command save test.dat x y would only store the variables x and y in the file test.dat. The commands who and 
whos list the variables available in the workspace, whos yielding more detailed information. 
 
The graphs appear in additional windows on the screen. With the command figure a new graphic window is 
generated, so that several graphs can be produced. 
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2.2 Help 
 
In order to get help for a specific Matlab command write “help command”. Help offers a list of possible subjects 
without further arguments. If the name of a command is not known, it is recommended to use the command 
lookfor keyword. The keyword needs to be an English word or phrase. Its proper choice is crucial for the 
succesful application of the lookfor-command. 
 
Access to the entire documentation is obtained by the command helpdesk. The documentation then appears in 
the HTML format. The manual ”Getting started“ which includes a detailed introduction to Matlab is of special 
interest to beginners. 
 
Furthermore, “Examples and Demos“ can be started from the help menu. There are examples arranged according 
to subjects. Generally, the Matlab commands to be used are shown, such that the examples can be used as a 
template for individual applications. 

2.3 Variables 
 
Names for variables may be assigned freely. Capitals and lower case letters are to be considered. Variables are 
introduced by assignment and do not have to be declared. The type of variable (scalar, vector, matrix) is 
determined by Matlab according to the assignment. Examples: 
 
 a = pi   % the value Pi=3.1415... is assigned to a 
 b = [1 2]  % the (row) vector (1, 2) is assigned to b 
 c = [1 ; 2]  % the (column) vector (1, 2) is assigned to c 
 d = [[1 2 3];[4 5 6i]] % a 2X3 matrix is assigned to d 
 
(Hints:   The text following the symbol % is considered a comment. 
  The variable pi is predefined. 
  The variable i = − 1  is predefined for defining complex values). 
 
The value of a variable can be displayed at any time by writing the name of the variable without any additions in 
the command line. Examples: 
 
 a  % input of variable 
 a = 3.14 % answer by MATLAB (scalar) 
 
 b  % input of variable 
 b = 1   2 % answer by MATLAB (line vector) 
 
 c  % input of variable 
 c = 1  % answer by MATLAB (column vector) 
       2 
 
 d  % input of variable 
 d = 1 2 3 % answer by MATLAB (2X3 matrix) 
       4 5 6i 
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Elements or sectors of matrices and vectors can also be selected and assigned to variables, respectively.  
Examples: 
 
 d(1,3)   % select the first tow, third column 
 d = 3   % answer by MATLAB 
 
 d(1,2:3)   % select the first, row, elements 2 to 3 
 d = 2 3   % answer by MATLAB 
 
 z = d(2,1:3)  % select row 2, columns 1 to 3  to  z 
 z = 4 5 6i  % answer by MATLAB  
 
 d(2,2) = 3  % assign the value 3 to the matrix d (row 2, column 2) 
 d = 1 2 3  % answer by MATLAB (2X3 matrix) 
       4 3 6i 
 
 d(1,:)  % address the first row 
    = 1 2 3 % answer by MATLAB 
 
 d(1,1:2:3) % address the first row, every second element) 
    = 1  3  % answer by MATLAB 
 
 d(1,[3 1]) % address the first row, third and first elements 
    = 3  1  % answer by MATLAB 
 
(Hints: Each operation causes Matlab to document its work on the screen. This can be stopped by typing a 
semicolon (;) after a command. Indexing of elements of vectors/matrices always starts with index 1.) The term 
‘end’ is a place holder for the highest index (last entry in a vector). E.g., a(1,end) always indexes the last column 
in row 1. 
 

2.4 Operators 
 
The apostrophe or inverted comma operator ‘ (Attention: not to be confused with double quotation marks!) 
performs a complex conjugation: 
 
 y = c’;  % transform c into a row vector 
 y  % show result 
 y = 1 2  % answer by Matlab 
 
 y = d’;  % calculate complex conjugated matrix 
 y  % show result 
 y = 1  4  % answer by MATLAB (3X2 matrix) 
       2  5 
       3 -6i 
 
However, the operator .‘ performs a transposition: 
 
 y = d.’;  % calculate transposed matrix 
 y  % show result 
 y = 1  4  % answer by MATLAB (3X2 matrix) 
       2  5 
       3  6i 
 
The known operators +,-,*,/ function in Matlab just as in a pocket calculator. Applying these operators to 
matrices and vectors, however, may lead to confusions, since Matlab analyses the variables to the left and right 
of the operators and selects the operators 'intuitively', i.e. it selects scalar or matrix operations depending on the 
dimension of the variables. Examples: 
 
 y = a * a; % multiply two scalars 
 y  % show result 
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 y = 9.8696 % answer by Matlab 
 
 y = b * c; % multiply row by column vector 
 y  % result is a scalar product 
 y = 5 
 
 y = b .* c' % multiply two row vectors component by component 
 y = 1 4  % result is a row vector again 
 
 
 y = d .^ d % exponentiating component by component 
 y = d ^ 3 % exponentiating matrix 
 
Similarly matrices can be multiplied by each other or by vectors, added etc. If an operation is to be done 
component by component, a dot has always to be put before the operator. In any operation Matlab is very exact 
about the dimension of matrices and vectors and gives the error message ''matrix dimensions must agree'' in case 
of discrepancies. 
 

2.5 Loops and conditions 
 
Repetitive operations are performed in loops. The following loop calculates a row vector and a column vector: 
 
 for i=1:5  % start of loop 
  p(i) = i^2; % entries of a row vector 
  q(i,1) = i^3; % entries of a column vector 
 end   % end of loop 
 
Several loops can be interleaved. The index increment can be selected by the colon operator: 
 
 for i=1:2:5  % start of loop over uneven indices 
  q(i) = i;  % entries for uneven indices 
  q(i+1) = -i; % entries for even indices 
 end   % end of loop 
 
When the command break is given within a loop, the loop is aborted. There are also loops which are carried out 
as long as a certain condition is fulfilled: 
 
 x=100; 
 while( x > 1)  % start of loop 
  x = x/2; 
 end   % end of loop 
 
(Hint: Loops are relatively slow in Matlab. If ever possible, they should be replaced by vector operations). 
 
The following operators are available for establishing relations: 
 

Operator Function 
== even 
~= uneven 
> greater 

>= greater than or 
equal to 

< smaller 
<= smaller than or 

equal to 
& logical “and“ 
| logical “or“ 
~ logical “not“ 
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The conditional execution of commands is done with so-called if-constructions. 
 
 if( x == 0 | x == 1 )  % start of if-construction 
  status = 1; 
 elseif( x < 0 & x ~= -1 )  % Attention: elseif must be written in one word 
  status = -1; 
 else 
  status = 0; 
 end    % end of if-construction 

2.6 Generating matrices/vectors 
 
The colon operator (:) serves to address parts of matrices/vectors (cf. section Variables), but also to generate 
matrices/vectors. Examples: 
 
 x = [1:10];  % generate row vector with integers between 1 and 10 
 x   % show result 
 x = 1 2 3 4 5 6 7 8 9 10 % answer by Matlab 
 
 x = [1:3 ; 1 3 4];  % generate (2X3) matrix 
 x   % show result 
 x = 1 2 3  % answer by Matlab 
       1 3 4 
 
A step size can also be selected: 
 
 x = [0:pi/4:pi];    % generate row vector with numbers from 0 to Pi, 
      % step size Pi/4. 
 x     % show result 
 x = 0 0.7854 1.5708 2.3562 3.1416 % answer by Matlab 
 
The following functions are available for generating matrices/vectors: 
 
 zeros - generates matrices/vectors and fills them up with zeros 
 ones - generates matricen/vectors and fills them up with ones 
 rand - generates matrices/vectors and fills them up with evenly distributed random      

numbers in the interval (0,1) 
 randn - generates matrices/vectors and fills them up with Gaussian random numbers 
    (mean 0, variance 1); 
 
The required numbers of lines and columns each are given as arguments. Example: 
 
 x = randn(2,3); % generate (2X3) matrix with random numbers (Gaussian) 
 

2.7 Functions 
 
Matlab offers all possible mathematical and numerical functions. All functions are applied to the entire 
vector/matrix. For example, the following command generates a vector containing the values of the sinusoidal 
function between 0 and 2 Pi with a resolution of Pi/10: 
 
 x = sin([0:pi/10:2*pi]); 
 
The following table shows fundamental and special mathematical functions: 
 
Function Description 
sqrt(x) square root 
sin(x) sine 
asin(x) arc sine 
sinh(x) hyperbolic sine 
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asinh(x) hyperbolic arc sine 
cos(x) cosine 
tan(x) tangent 
exp(x) exponential function 
expm(X) matrix exponential function 
log(x) natural logarithm 
logm(x) matrix logarithm 
log10(x) decimal logarithm 
rem(i,n) modulo function 
round(x) rounding towards nearest integer 
floor(x) rounding towards minus infinity 
ceil(x) rounding towards plus infinity 
inv(X) calculate the inverse of a matrix 
fft(x) fast Fourier transform 
abs(x) absolute value 
real(x) real part 
imag(x) imaginary part 
angle(x) phase angle 
sum sum of vector elements 
prod product of vector elements 
max search of maximum 
min search of minimum 
mean mean 
std standard deviation 
cov (co-)variance 
median median 
bessel Bessel functions 
erf Gaussian error function 
gamma gamma function 
size calculate quantity of a matrix/vector 
hist histogram 
sort sorting algorithm 

 

2.8 Visualization 
 
Various visualization options are available to represent data graphically. The simplest one are xy-plots which 
represent data points (x,y) in a cartesian coordinate system: 
 
 x = [0:pi/10:2*pi]; 
 y = sin(x); 
 plot(x,y); 
 
These commands generate a period of the sinusoidal function as a graph. The following table shows further 
fundamental commands available for visualization: 
 
Function Description 
plot(x,y) xy plot, linear axes 
loglog(x,y) xy plot, double logarithmic representation 
semilogx(x,y) xy plot, logarithmic x-axis 
semilogy(x,y) xy plot, logarithmic y-axis 
title(‘text’) set image title 
xlabel(‘text’) set lable of x-axis 
ylabel(‘text’) set lable of y-axis 
axis set value range of axes 
polar(theta,rho) polar plot 
contour(z) 2D representation of contour of matrix z 
image(z) 2D color representation of matrix z 
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imagesc(z) like image, but with scaling of data 
pcolor(z) similar to image(z) 
colormap set color scale in case of color representation 
plot3(x,y,z) 3D representation of vectors 
contour3(z) 3D representation of contour of matrix z 
mesh(z) 3D mesh plot of matrix z 
surf(z) 3D mesh plot of matrix z with color 

representation 
 
In order to practice 2D and 3D representations a text matrix can be generated with the command peaks. For 
example, the command imagesc(peaks) plots a 2-D color representation  of the matrix generated by peaks. 
 

2.9 Input and output 
 
The command input reads an input from the keyboard: 
 

x = input(‘write value of x: ‘) 
 
This command displays the text on the screen and waits for an input from the keyboard. The input is assigned to 
the variable x. 
 
The command disp displays text and values of variables on the screen: 
 

disp(‘the value of x is: ‘) 
disp(x) 

 
These commands display the text as well as the value of variables x. 
 
The command fprintf is available for a formatted printout as known from the programming language C. 
Additionally, the commands fopen, fread a well as fwrite and fclose are available for reading or writing in files 
(Hint: not to be confused with the commands load and save, which store the workspace in a special Matlab data 
format). 
 

2.10 Writing individual commands (“M-Files“) 
 
Individual programs and functions are easy to write in Matlab. For this purpose a so-called script is written, 
which is a text file comprising Matlab commands. Matlab interprets the file name as the name of the command; 
the extension “m” of the file is fixed. Therefore, the files are called M-Files. How such M-Files have to be 
arranged is explained by an example in the following. Further information can be obtained by the Matlab Help 
function. Write help script or help function. 
 
(Hint:              The directory in which the files are stored must be in the search path (command path, addpath) 

or the files must be in the actual directory (command cd) so that Matlab can find the individual 
M-Files.) 

 
A script is produced by writing the commands into the text file line by line. A usual text editor (e.g. notepad) can 
be used for this, but also the special Matlab text editor (call the editor by selecting Open or New in the menu 
File). The script is started by writing the file name in the command line. Matlab then executes all commands and 
keeps the variables generated upon execution of the commands within the workspace. 
 
(Hint:              When an M-File is changed, Matlab perhaps does not read it in anew. The old version is executed 

(flaw in the network installation of Matlab, e.g. in the CIP room). The command clear all forces 
the program to read in a new version which, however, produces the side-effect that all variables 
in the workspace are deleted. 

 
The script can be transformed into a function, which behaves like a special Matlab function. For this certain 
formalities are to be considered, which are explained by an example in the following: 
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function [mean,stdev] = stat(x) 
% 
% [mean,stdev] = stat(x) 
% 
% This function calculates the mean and standard deviation of a data set 
%  
% Transfer parameter: 
%    x – data set as vector 
% 
% Return values: 
% mean - mean 
% stdev - standard deviation 
% 
 
n = length(x); 
mean = sum(x) / n; 
stdev = sqrt(sum((x - mean).^2)/n); 

 
The first line begins with the keyword function and declares the name of the function (here: stat), the arguments 
in parentheses (here: x) as well as the return values (here: mean and stdev). The following list of comments is 
displayed by Matlab, if the help function is called for this command (help stat). Then the actual function starts 
which can consist of Matlab commands. It is important that the return values are calculated from the arguments. 
For this purpose subsidiary variables can be generated, too (here: n). The function controls its own workspace, 
i.e. the function only knows the values of the arguments and only the return values are returned to the calling 
program. All subsidiary variables are local and are deleted upon termination of the function. Now the function 
can be called from the command line as follows: 
 
 noise = randn(1,100);  % generate random numbers 
 [mnoise,snoise] = stat(noise); % calculate statistics 
 disp(‘mean and standard deviation are:’); 
 mnoise 
 snoise 
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2.11 Exercises 
 
Remark: Save the solutions of all exercises in Script files ("M-Files"). 
 
I. Generating data 
 
a. Generate a time vector from 0ms to 10 ms at a sampling frequency of 10 kHz. 
b. Generate a sine with a frequency of 1 kHz over the time basis given by the time vector from a. 
c. Plot the sine from b. over the time vector from a. 
d. Like c., however, only every second and fourth sampling values are to be plotted. 
e. Save the generated data in a data file (hint: use the command "save") 
f. Replace the first example loop in the section Loops and conditions by vector operations. 
 
 
II. Using matrices 
 

a.    Define the matrix A =

















1 2 3
4 5 6
7 8 9

 

       and the vectors ( )b = 1 2 3 , ( )c = 4 5 6  and ( )d = 1 2  as line vectors. 
 
b.    Calculate AbT ; bA ; b * c as scalar product and (!) component-wise. 
 
c.    Solve the linear system of equations Ax=bT  (Hint: "help slash") and verify the solution by insertion. 
 

d.    Calculate A2 dT , where A2

5 6
8 9=







  (write A2 as submatrix of A!). 

 
III. 2D and 3D representation of matrices 
 
a. Generate a two-dimensional Gaussian bell with a variance of  8 on a (25x25) matrix. 
b. Plot the matrix in a 2D color representation with contours. 
c. like b, however, in a 3D color representation. 
d. Optional task: How can a. be solved without a FOR loop? 
 
 
The examples in the menu ‚Help->Examples and Demos‘ are very instructive and show many tricks and 
knacks of Matlab programming (the source texts for all examples are included!). It is recommended to 
look through these examples.
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3 Representation of numbers and numerical errors 
 
Types of errors: 
 

1. Errors in the input data (e.g. finite precision of measuring devices) 

2. Roundoff errors 
• because of finite precision of the number representation on computers 
• because of finite precision of arithmetic/mathematical calculations on the computer 

3. Range errors 

4. Truncations errors 

5. Error propagation (instable solutions in iterated algorithms) 

 
Type 1 will not be treated here, because the measurement process is not a matter of Numerics. Before treating 
types 2-5 in detail, common error measures will be introduced. 
 

3.1 Error measures 
 
Definition:  x* be an approximation to x (x,x*∈ A, A set of numbers, e.g. real numbers). Then 
 

∆

∆

x x x

r x
x x

x
x

x

= −

=
−

=

*

( )
*  

 
are the absolute error and the absolute relative error of x*. 
 
Mostly, ∆x is not known, but an error bound ε can be estimated, which indicates the maximum possible 
absolute error: 
 

x x x x x* * *− ≤ ≤ + ⇔ = ±ε ε ε  
 
In most cases the ”real“ or “true” number is not known, but only the approximation x*. Then the relative error is 
approximated as well: 
 

r x x
x x

( )
* *

≈ ≤
∆ ε  

 
Example: If the measured value is 0.0123 ± 0.0005, then ∆x ≤ =ε 0 0005. . The measured value has two 
significant digits. The relative precision is r g( ) . . .≤ ≈0 0005 0 0123 0 04 . 
 

3.2 Representation of numbers and roundoff errors 
 
Digital computers cannot represent infinitely many different numbers, because only a finite number of 
information units (mostly stated in bits2) are available for representing a number. The set A of numbers that can 
be represented is called the set of machine numbers and generally is a subset of the real numbers. A depends on 
the exact kind of number representation on the computer and implicitly involves a rounding operation rd(x) 
stating how real numbers are approximated by machine numbers. It can be defined generally: 

                                                           
2 1 Bit corresponds to a ‘yes-no’ decision (0 or 1). 
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rd A

rd x A x rd x x g g A

: ,

( ) : ( )

ℜ →

∈ − ≤ − ∀ ∈
 

 
The absolute and relative approximation errors caused by the finite number representation are obtained by 
setting x* = rd(x) in the formulas given above. In general, the result of an arithmetic operation is not an element 
of A, even if all operands are elements of A. The result must again be subjected to the rounding operation rd(x) 
in order to represent it. Thus, arithmetic operations can lead to additional roundoff errors, even if the result of 
the operation was calculated with infinite precision: 
 

AyxAyxrdAyx ∈+∈+⇒∈ y necessarilnot  )(but  , )(,  
 
Digital computers work with different kinds of number representations and thus with different machine 
numbers. Special common representations of numbers as used in most digital computers are shown below. 

3.2.1 Integers 
 
Integers are mostly represented by the two’s complement, representing each machine number z (z being in 
decimal format) by a set of bits as follows: 
 

{ } { }

{ }

0 1 1

2
1

1
0

, ,...,    ,    0,1
with

2 2  with 0,1

N n

N
N n

N n n
n

z

z

α α α α

α α α

−

−
−

−
=

∈

= − ∗ + ∈∑

�
 

 
An information unit of 1 bit („0“ or „1“) is required for each coefficient αn , such that N bits are necessary to 
represent the number (common quantities for N being 8,16,32, and 64). Hence, the bit representation of several 
numbers for e.g. N=8 is: 
 

Number Bit representation 
+1 0 0 0 0 0 0 0 1 
+2 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 
-1 1 1 1 1 1 1 1 1 

+117 0 1 1 1 0 1 0 1 
-118 1 0 0 0 1 0 1 0 

Significance -27 26 25 24 23 22 21 20

 
Key parameters of the two’s complement are: 
Range of numbers: − ≤ ≤ −− −2 2 11 1N Nz  
 
Error bound: ∆z ≤ =ε 05.  
 

Relative error: r z x
z z

( )
*

.
*

≈ ≤
∆ 05

 

 
The representation of integers has a constant absolute error and hence a relative error depending on the value of 
the number to be represented. 
 
Remark: The name ”two’s complement“ is explained by the fact that the transition from a positive to the 
negative number of equal absolute value results from performing a bit by bit complement in the bit 
representation (each “1” becomes “0” and vice versa) and then adding 1. 
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Remark: The advantage of the two’s complement over other conceivable representations of integers is the fact 
that the addition of two numbers is done by simply adding bit by bit in the bit representation. It is not necessary 
to differentiate between the cases of positive and negative numbers. Example (note the carry-over): 
 

+2 0 0 0 0 0 0 1 0 
-1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 

 
Remark: Due to the significance of each single bit in the bit representation multiplying by 2 means simply 
shifting all bits to the left by one position (“left shift”) and accordingly, dividing by 2 means a “right shift“. 

3.2.2 Floating point numbers 
 
A machine number g (g being in decimal format) is represented in the floating point binary format as follows: 
 

( )g m B B ms e= − ∗ ∗ ≤ <1 1 1  ,   
 
with: 
 

s sign bit (”0“ or ”1“ 
m mantissa 
e exponent 
B basis (fixed value) 

 
Remark: The side condition 1/B≤ m< 1 makes the representation unique. This is called the normalized 
representation. For example, the number 0.5 with the basis B=10 can be represented as 0.5*100 or 0.05*101. The 
first representation is fixed by the side condition. 
 
The 32bit IEEE Floating-Point Format is used on most digital computers. B=2 is used as a basis and the 
exponent e is represented as an 8 bit two’s complement. A 23bit representation with the following bit 
significances is used for the mantissa m: 
 

Bit m0 m1 m2 ... m21 m22 
Significance 2-1 2-2 2-3 ... 2-22 2-23 

 
 
Hint: The normalization condition causes the bit m0 of the mantissa m to be always 1. Therefore, it is generally 
not saved at all. 
 
Example: The number 3 can be represented as follows: 
 

( )3 2 1 2 2 22= − + − ∗  

Thus, the bit representation of the number 3 in the IEEE Floating-Point Format is: 
 

s e0 e1 E2 e3 e4 e5 e6 e7 m0 m1 m2 ... m21 m22

0 0 0 0 0 0 0 1 0 1 1 0 ... 0 0 
 
Key parameters of this representatuion are: 
 
Range of numbers (approx.): − ≤ ≤10 1038 38g  
 
Be g=m*Be ∈ A a machine number: 
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Error bound: mantissa  theof bits ofNumber  : , 2
2
1 MBg eM ∗∗=≤∆ −ε  

 

Relative error: r g g
g m B Be e

M( )
*

≈ ≤
∗

≤
∗

= −∆ ε ε
1 2

2  

 
The floating point representation has a constant relative error. The error bound is called machine precision. 
 
Hint: The machine precision is often defined as the smallest number ε > 0, which still yields a result >1.0 upon 
addition (1+ε). 
 
Hint: Besides the 32bit IEEE Floating-Point Format (”float“), a corresponding 64bit IEEE Floating-Point 
Format (”double“) is available in most programming languages, which possesses more bits for exponent and 
mantissa and thus a higher precision and a larger range of numbers. Matlab internally works with the 64bit-
format. 

3.3 Range errors 
 
The different representations of numbers cover a limited range of numbers (see above). This range can easily be 
exceeded by arithmetic operations. An important example is the calculation of the factorial n!, which exceeds 
the range of  numbers of the 64bit floating point representation already for n>170. The range error caused by 
exceeding the range of numbers is bigger than the roundoff error by orders of magnitudes and must be avoided 
by choosing the appropriate representation of numbers and by checking the orders of magnitude of the numbers 
examined (Example: Calculation of the faculty via application of the Stirling formula and logarithmic 
representation). 
 
Furthermore, it is possible that certain physical constants exceed or fall below the range of representable 
numbers (cf. Exercises). 

3.4 Truncation errors 
 
Errors inherent to the algorithm, even if no rounding errors occur. Occur in iterated algorithms,when the 
iteration is stopped after a certain number of iterations (Examples: Calculation of the exponential function by 
finite sums and approximation of the integral by rectangles of finite width). 
 

3.5 Error propagation in arithmetic operations 
 
Addition: 
 

ba
ba

x
xxr

bax
bbaax
bbaax

babax

+
∆+∆

=
∆

=

∆+∆=∆
∆−+∆−=
∆++∆+=

≥+=

)(

 , 0, ; 

min

max

 

 
 
This means that the absolute errors of the input values to the addition are added. 
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Subtraction: 
 

ba
ba

x
xxr

bax
bbaax
bbaax

babax

−
∆+∆

=
∆

=

∆+∆=∆
∆−−∆−=
∆+−∆+=

≥−=

)(

 , 0, ; 

min

max

 

 
When two approximately equal numbers are subtracted, the relative error becomes very big! This is called loss 
of significance, catastrophic roundoff error or subtractive cancellation. 
 
Example: Loss of significance in calculating the square formulas (→ Exercises). 
Example: Look at the difference of the numbers p=3.1415926536 and q=3.1415957341, which are about equal 
and are both significant on 11 decimals. The difference p-q=-0.0000030805 has only five significant digits left, 
although the operation itself did not cause new errors. 
 
Multiplication: 
 

( ) ( )
( ) ( )

b
b

a
a

ba
baba

x
xxr

babax
babababbaax

babababababbaax
babax

∆
+

∆
=

∆∗+∗∆
≈

∆
=

∆∗+∗∆≈∆
∆∗−∗∆−∗≈∆−∗∆−=

∗∆∆∗∆∆∗+∗∆+∗≈∆+∗∆+=
≥∗=

*
)(

an smaller thmuch   da , 
, 0, ; 

min

max

 

 
Division: 
 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

b
b

a
a

bab
baba

ba
x

x
xxr

b
babax

b
bababa

bbbb
bbaabbaax

b
bababa
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≈
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=
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=
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≈∆
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+≈

∆+∆−
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2
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*
*
*
*

 , 0, ; 

 

 
The absolute errors of the operands add up in addition and subtraction, while the relative errors add up in 
multiplication and division. 
 

3.6 Error propagation in iterated algorithms 
 
Many algorithms contain iterated reproductions, in which a set of calculations is repeated with the data 
calculated in the preceding step as long as a certain break condition is reached. The errors produced in one step 
propagate from step to step. Depending on the problem, the total error may increase linearly, increase 
exponentially or decrease exponentially (error damping). The behavior of an algorithm can be deduced from 
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the operations used in each iteration and the rules of error propagation in the fundamental arithmetic operation 
explained above. 
 
Definition: E(n) be the total error following n iteration steps and ε the machine precision. If |E(n)| ≈ nε, the error 
propagation is called linear. If |E(n)| ≈ Knε, the error propagation is exponential, which leads to error damping 
for K<1. 
 
Example: Iterated reproductions lead to a strong dependence on the initial values in case of exponential error 
propagation and thus represent a path into deterministic chaos. An example for this is the logistic parabola. 
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3.7 Exercises 
 
Remark: Save the solutions of all tasks in  Script files ("M-Files"). 
 
I Roundoff errors 
 
1. Determine the machine precision of Matlab and estimate the number of bits used to represent the mantissa. 

(Hint: Start at eps=1 and divide eps by 2 until (1+eps) is not larger than 1 any longer). 
2. Calculate the formula x=(10+h)-10 for h=B-n  for n=0...21 and B=10. Calculate the absolute relative error 

between x and h and plot it as a function of n. Repeat the same for B = 2. Why do we find distinct 
differences here? 

 
II Range errors 
 
1. How can the range error be avoided in calculations with physical constants (atom physics, quantum 

mechanics)? 
2. Take eV (electron volt) as a unit for energy and the mass of the electron as a unit for mass. Convert 1kg, 1m, 

and 1 s into these units. 
 
III Truncation errors 
 
Taylor’s series of the exponential function reads:   

                 ( ) ( )  
i!
x =,  with  ,lim

0

i

∑
=

∞→
=

N

iN

x NxSNxSe  

Calculate the subtotals S(x,N) up to N=60 and plot the absolute relative error relating to the true value (Matlab 
function exp()) as a function of N. Test the program for x=10,2,-2 and -10. Why does the error increase for 
negative numbers? 
 
IV Error propagation 
 
1. The square equation ax bx c2 0+ + =  has the solutions: 
 

a
acbbx

a
acbbx

2
4 and 

2
4 2

2

2

1
−−−

=
−+−

=  

 
a. Under which conditions do we find a loss of decimal places in the numerator? 
b. Prove that the zeros can also be calculated according to the following equivalent formula: 

acbb
cx

acbb
cx

4
2 and 

4
2

2221
−−

−
=

−+

−
=  

c. How can the loss of decimal places be avoided with b.? 
d. Calculate the zeros for a=1, b=-10000.0001, and c=1 as well as for a=1, b=-100000.00001, and c=1 with 
both formulas. Compare the results with the correct solution and verify them by inserting into the equation 
(Hint: Use the command sprintf, otherwise Matlab will not represent enough decimal places (e.g. 
sprintf('%5.10g',x1) )). 
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4 Numerical differentiation and integration 
 
Numerical methods of differentiation and integration are applied when analytical solutions are not known. There 
are many examples of functions that are not integrable analytically, e.g. the Gaussian error function 
 

( )erf x e dyy
x

= −∫2 2

0
π

, 

 
hence, the integral over the Gaussian distribution. Contrary to integration, differentiation in the analytical way is 
virtually always feasible.Consequently, numerical differentiation itself is rarely applied directly. However, it is 
the basis for developing algorithms to solve ordinary and partial differential equations and is therefore described 
in detail below. 
 
The most important numerical methods of differentiation and integration are explained in the following. The 
procedures of developing algorithms and of estimating numerical errors are generally applicable and will be 
found again in a complex form in later chapters. 
 

4.1 Differentiation 
 
The principle of numerical differentiation is to approximate the function to be differentiated by a polynomial, 
which can then be derivated according to the known rules for polynomials. The value of the derivative of the 
polynomial is used as an estimated value for the derivative of the function. In general the approximation and the 
estimated value for the derivative are the more precise, the higher the order of the polynomial. But this is not a 
law and there are exceptions, especially when the function to be derivated cannot be well approximated by 
polynomials of high orders. 

4.1.1 Right-hand formula (”naive“ ansatz) 
 
We know from analysis that the derivative is calculated according to the following equation: 
 

( ) ( )
f x

f x h f x
hh

' ( ) lim=
+ −

→0
 

 
The limiting process cannot be done numerically, however, selecting an appropriate small h yields an 
approximation of the derivative according to the following equation: 
 

( ) ( )
f x

f x h f x
h

h' ( ) ( ),=
+ −

>+     aε 0  

 
εa  being the (unknown) truncation error resulting from the omission of the limiting process (finite h). The 
truncation error occurs even if the quotient has been calculated with arbitrary precision. Numerical calculation of 
the quotient leads to the following additional sources of errors: 
 
1. Round-off errors in calculating x+h. 
2. Round-off errors in calculating the numerator (Attention: Loss of significance is possible.) 
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In order to avoid the first kind of errors h should be chosen such that  x+h is a number that can be exactly 
represented3. The second rounding error cannot be avoided. If the function f is calculated to the machine 
precision εm , the absolute error in the calculation of the derivative is as follows: 
 

∆( ( )) ( )'f x
h

hm= >
2

0
ε

ε+     a  

 
For calculating the truncation error we expand the function into a Taylor’s series of the first order: 
 

( ) ( ) ( )f x h f x hf x h f x z x h( ) ' ''+ = + + ≤ ≤ +
1
2

2 ζ     ,   

 
ζ  is a value within the observed interval according to Taylor’s theorem. The equation above can be 

immediately derived by resolving for f x' ( ) : 
 

( ) ( ) ( )
( ) ( ) ( )

f x
f x h f x

h
hf

f x h f x
h

O h

' ''( ) =
+ −

−

=
+ −

+

1
2

ζ
 

 
Hence, the truncation error is linear in h. This is called the order O(h). The absolute error can then be stated as 
follows: 
 

( )( )∆( ( )) max' ''f x
h

Mh M fm
x x h

= + =
≤ ≤ +

2 1
2

ε
ζ

ζ
    ,      

 
The first addend increases with decreasing h, while the second decreases with decreasing h. Thus, there is an 
optimum h with minimal error, which depends on the maximum M of the second derivative in the observed 
interval. Since M is usually unknown, it appears to be rather pointless to choose h arbitrarily small because of 
the numerical errors. It is appropriate to start with a relatively large h and then reduce it until the estimation of 
the derivative does not change any longer referring to a predetermined precision. 
 

4.1.2 Centered formula 
It would be possible to improve the precision, if the truncation error decreased more than linearly with h, e.g. by 
the order O(h2) or higher. The object of developing such formulas is to use Taylor’s series of higher orders and 
to incorporate the interval x-h as well: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x h f x hf x h f x + h f x x h

f x h f x hf x h f x h f x-h x h

' '' '''

' '' '''

( )

( )

+ = + + ≤ ≤ +

− = − + − ≤ ≤ +

1
2

1
6

1
2

1
6

2 3
1 1

2 3
2 2

ζ ζ

ζ ζ
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    ,  
 

 

The two formulas are subtracted from each other and resolved for f x' ( ) . In doing so the second derivative is 
dropped (just like all further even orders would be dropped): 
 

                                                           

3 First calculate the following temporary quantities: 
~
~ ~
x x h

h x x

= +

= −
. x x, ~  and 

~h are exactly representable 

numbers, as they were explicitly assigned to a variable in the workspace. Then calculate the formula with x x, ~  

and 
~h . 
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In this so-called centered formula the truncation error decreases with h2, while the roundoff error is 
proportional to1/h in calculating the quotient, as already shown for the right-hand formula. In general this leads 
to a smaller total error. 
An estimation of the second derivative can be found in a similar way. For this purpose the Taylor expansion is 

again performed in the intervals x+h and x-h and then resolved for f x'' ( )  by adding the two series: 
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f x h f x hf x h f x + h f x +O h
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Hence, the second derivative is calculated to the order O(h2) using the centered formula. However, the function f 
must be evaluated at three instead of two points. 

4.1.3 Richardson extrapolation 
 
Of course, formulas of higher order can be found in a way similar to that shown in the preceding section, but the 
formulas of higher orders can be calculated from the formulas of lower orders more easily. This procedure is 
called extrapolation and is described in the following. For this we observe the entire Taylor expansion of 
function f at the point x. An appropriate conversion yields the centered formula again, however, the truncation 
error is calculated in all powers of h: 
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The series represents the (unknown) truncation error. The quotient is defined as ( )D h0

4 in the left part of the 
last equation and is evaluated for the step sizes h and 2h: 
 

                                                           
4 ( )D h0 corresponds to the centered formula. 



 25

( ) ( )

( ) ( )

D h f x h

D h f x h

k
k

k

k
k

k

k

0
1

2

0
1

22 4

= +

= +

=

∞

=

∞

∑

∑

'

'

α

α
 

 
 
The next higher power of h in the truncation error (k=1) can now be eliminated by appropriately 
combining ( )D h0  and ( )D h0 2  : 
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The next iteration to the approximation of ( )f x'  is thus obtained as follows: 
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Since the series for the truncation error starts only at k=2, ( )D h1  has a truncation error of the order O(h4) and is 

calculated from the two quantities ( )D h0  and ( )D h0 2 , which are only of the order O(h2) themselves. This can 
be continued in general in order to eliminate higher orders: 
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This recursion formula is called Richardson extrapolation and can be used whenever the truncation error 
shows only even powers in h. The numerical differentiation is then obtained by calculating the following table: 
 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

D h
D h D h
D h D h D h
D h D h D h D h

0

0 1

0 1 2

0 1 2 3

2 2
4 4 4
8 8 8 8

. . .
. .

.
 

 
The table can only be calculated row by row, except for the first column which is directly yielded according to 
the centered formula. The following columns then result from the extrapolation formula. The highest-order 
result is then found as the last value in each row (diagonal element). Calculation of the rows is stopped as soon 
as the row result does not change any longer (referring to a predetermined precision). 
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4.2 Integration 
Consider the definite integral 

( )f x dx
a

b

∫  

The essential technique for numerically calculating definite integrals is to approximate the function f in the 
observed interval [a,b] by a polynomial P, which is then integrated according to the simple rules of polynomial 
integration. The integral of the polynomial is then used as an estimate of the integral of the function: 
 

( ) [ ] ( )

( ) ( )

f x P x P x x

f x dx P x dx

a b n
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N
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, ( )≈ =

≈

=
∑
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        ,      α
0

 

 
The higher the order N of the polynomial, the better the assessment of the integral value in general. However, 
this is only true for functions which can be approximated by polynomials of high orders (which is not always 
possible, e.g. in case of discontinuities). Thus, the problem is reduced to performing an appropriate polynomial 
approximation. Generally speaking, a polynomial of the N-th order can be determined from N+1 functional 
values. For approximation of the function f by a polynomial of the N-th order it is sufficient to evaluate f at N+1 
points in the observed interval [a,b]. 

4.2.1 Trapezoidal rule 
Let us assume that we divide the interval [a,b] into N intervals. For this N+1 points within the interval need to be 
defined: 
 
x a x b x x x xN N N0 0 1 1= = < < < <−, ,        …  
 
The function f is evaluated at these points: ( )f f x i Ni i≡ < <,     0  
 
The simplest method of integration is to linearly connect the functional values at these points piecewise. Thus, 
we obtain a trapezoid with the following area in each interval: 
 

( )( )T x x f f i Ni i i i i= − + < <− −
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11 1 ,      

 

The total area is then: T Ti
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This formula is simplified, if the points are evenly distributed in the interval. Be ( )h b a N= −  the width of 

each interval, hence x a ihi = + . The area of each interval is then ( )T h f fi i i= + −1 2 1 . Except the 

marginal points x0 and xN1, each fi  occurs twice in the formula for the total area: 
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According to this trapezoidal rule the integral can be approximated the better, the smaller h is (the occurring 
truncation error due to the finite interval is stated later on) (Remark: The estimate of the integral results as a 
weighted sum of the sampling points of the function). 
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4.2.2 Recursive trapezoidal rule 
Now we want to iteratively calculate the aproximation of the integral according to the trapezoidal rule by 
systematically reducing the interval h. It is useful to bisect h each time proceeding from the complete interval 
(h=(b-a)): 
 

( )h b a nn n= − =
1

2
0 1, , ,      …  

 
The functional values fi  calculated in the preceding iteration step can be used again in this case. By simple 
consideration we obtain: 
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The series ( )T hn  converges towards the value of the integral. 

4.2.3 Error analysis and Romberg integration 
A procedure similar to that one demonstrated in section 4.1.3 shows that the truncation error of the trapezoidal 
rule contains only even powers of  h: 
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Hence, the Richardson extrapolation for raising the order of errors is applicable again: 
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Numerical integration is then obtained by calculating the following table: 
 

( )
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T h T h
T h T h T h
T h T h T h T h

0 0

0 1 1 1

0 2 1 2 2 2

0 3 1 3 2 3 3 3

. . .
. .

.
 

 
The table can only be calculated row by row, except for the first column which directly results from the 
recursive trapezoidal rule. The columns result from the extrapolation formula. The highest-order result is then 
found as the last value in each row. Calculation of the rows is stopped as soon as the result of the row does not 
change any more (referring to a predetermined precision). 
 
Calculation of the integral according to the recursive trapezoidal rule including additional Richardson 
extrapolation is called Romberg integration. 
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4.2.4 Gaussian integration 
The trapezoidal rule includes the evaluation of the function f at points xi, which are equidistantly distributed in 
the interval [a,b]. The estimated value of the integral then reads: 
 

( ) ( ) ( ) ( )f x dx T h h f f h f f f x
a

b

N i
i

N

i i≈ = + + =∫ ∑
=

−

1 2 0
1

1

,           

 
Hence, it represents a weighted sum of values of the function fi, the weights wi being 0.5 in this case for the end 
points and 1 for the other points. The question arises of whether a nonuniform distribution of the values xi yields 
a higher precision and if so, which weights are to be used for summing up. Here, just as in many other 
mathematical problems, Gauss provides us with an answer. He succeeded in showing that a certain selection of 
weights and sampling points xi yields an approximation of f by a polynomial of the order 2N, if the function is 
evaluated at N points only. Thereby the order doubles as compared to the trapezoidal rule. The values of wi and 
xi are found in tabular form for different N in mathematical tables of formulas. As mentioned above, a higher 
order of polynomials does not necessarily mean a higher precision. The former is only true for functions f that 
can be approximated by polynomials of high orders. 
 
Extending the Gaussian integration allows for the integration of  certain weighting functions into the integrands: 
 

( ) ( ) ( )f x g x dx w f f f x
a

b

i
i

N

i i i≈ =∫ ∑
=0

,         

 
The values of wi and xi are found in tabular form for different weighting functions g(x) and different N in 
mathematical tables of formulas. The following weighting functions are commonly in use: 
 
Integration formula Weighting function 
Gauss-Legendre ( )g x = 1 
Gauss-Chebychev ( ) ( )g x x= −

−
1 2 1 2

 

Gauss-Hermite ( )g x e x= − 2

 
Gauss-Laguerre ( )g x x e x= −α  
Gauss-Jacobi ( ) ( ) ( )g x x x= − +1 1α β

 
 
The advantage of these rules is that they are precise for integrands which can be written as a product of a 
polynomial and one of the weighting functions listed above. 
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4.3 Exercises5 
 
1. Write a Matlab function deriv for numerically calculating the derivative of any arbitrary function f at a 

predetermined point x according to the right-hand and centered formulas. Bisect the interval h proceeding 
from h=1, until the value does not change any longer referring to a predetermined precision (e.g. 10-5). 
(Hint: Write f as an independent Matlab function and call it to calculate the values of the function f within 
deriv).  

2. Calculate the derivation of the following function numerically using deriv: 
 
           a.   f(x)=sin(x)     ,      x = 5/4*π 
           b.   f(x)=e-x/x2      ,      x = 0.5 
 
Plot the absolute error between the numerically calculated and the exact derivatives as a function of the 
interval h. Check whether the absolute error decreases with h (right-hand formula) and h2 (centered formula), 
respectively (Hint: Use a double logarithmic representation). 

3. (*) Improve the function deriv of Exercise 1. using Richardson extrapolation and calculate the derivatives 
2.a and b anew. At which interval h is the precision equal to that yielded by the centered formula? 

 
Use the Matlab function rombf for Romberg integration for the next exercises: 
 
4. Determine π by calculating the integral over a quarter unit circle with a precision of 20 digits. 

 

5. (*) In Fresnel’s diffraction the Fresnel integrals play an important part: 

( ) ( ) ( ) ( )C w x dx w x dx
w w

= ⋅ = ⋅∫ ∫cos sin1 2 1 22

0

2

0
π π       S  

Write a function for calculating C(w) and S(w). Plot S against C for w = 0.0, 0.1, 0.2,..., 5.0. What does the 
plot represent?

                                                           
5 Exercises with (*) are optional. 
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5 Ordinary differential equations (ODE) 
 
Differential equations (DE) are of special relevance in physics since Newton dropped the apple and described 
this event (and thus gravitation) by means of the differential calculus, which was new at that time. Ordinary 
differential equations (ODE) contain only derivatives for one quantity, e.g. the time t. Differential equations 
containing derivatives for several different quantities are called partial differential equations (PDE). Spring 
pendulum and planetary motion are examples of ODE. Schrödinger’s equation and the wave equation are 
examples of PDE. Many DE cannot be solved analytically so that numerical methods are required again. 
 

5.1 Mathematical formulation of the initial value problem 
 
For deriving the general form of ODE we proceed from Newton’s law F ma= , which states a relation 
between  force and acceleration6. For a given force we can derive the equations of motion: 
 

a
d r
dt

F
m

= =
2

2  

 
This vectorial equation of the 2nd order (2nd derivation occurs) can be rewritten into a system of two equations 
of the 1st order by inserting a new intermediate variable. This is always feasible, but not plain in general, as there 
are several possibilities to define the variable. In this case it is advisable to use velocity as an intermediate 
variable: 
 

( ) ( )( )

( )
( )

dr
dt

v

d v
dt

F r t v t t
m

r t t r

v t t v

=

=

= =

= =

, ,

0 0

0 0

 

 
Now we have two equations of the first order. By integration of the two derivatives we obtain two integration 
constants, which are determined by selecting the initial conditions. The force can depend on position and 
velocity (and hence implicitly on time) and also explicitly on time. Let us assume that the problem is two-
dimensional in the Cartesian coordinates x and y. Then we can convert the problem into a general form by 
introducing further variables: 
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The explicit dependence on time of all quantities has been omitted. According to this definition the general form 
of an ODE as an initial value problem is then: 
 

( )( )d z
dt

H z t t= ,      with  ( )z t z0 0=  

 

                                                           
6 All vectorial quantities are underlined. 



 31

In the above equation, z is the required solution vector (in the simplest case it is a scalar function of t) and H, a 
linear or nonlinear vectorial function in the arguments z and t. z0 is the initial value, t mostly represents the time. 
The function H can be interpreted geometrically as a vector field, which predetermines a direction for z at each 
point of the space spanned by z and t. 
A given problem should be converted into the general form shown above. Different formulations may arise 
depending on the intermediate variables chosen. Appropriate intermediate variables are not always easy to find, 
as numerical problems may arise according to the individual choice which are not always assessable in the 
beginning. In case of doubt several formulations have to be found and calculated. 

5.2 Simple methods 
Simple approaches directly resulting from the derived formulas for numerical differentiation are shown in the 
following. The different formulations are very easy to calculate and they appear to differ relatively little. 
However, experiments show that they are optimally applicable to different problems. In general, it is not clear 
beforehand which method is suitable in which case, as the numerical errors are difficult to assess. Only intuition 
and experience can help here. The idea behind all of these methods is to discretize the derivatives by appropriate 
approximations and thus to calculate the values of the variables within a time step from the values of the 
variables in the preceding time step. 

5.2.1 Euler’s method 
Let us proceed from the simple equations of motion again: 
 

( ) ( )( ) ( ) ( )( )

dr
dt

v

d v
dt

F r t v t t
m

a r t v t t

=

= =
, ,

, ,
 

 
Approximating the derivative according to the right-hand formula using a time step τ, we obtain: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

r t r t
O v t

v t v t
O a r t v t t

+ −
+ =

+ −
+ =

τ
τ

τ

τ
τ

τ , ,
 

 
or 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

r t r t v t O

v t v t a r t v t t O

+ = + +

+ = + +

τ τ τ

τ τ τ

2

2, ,
 

 
Note that the order of the truncation error increases after multiplication by τ. Introducing the following notation 
simplifies the equations: 
 

( )f f n nn ≡ =τ          ; , , , ...0 1 2  
 
Hence it follows: 
 

( )
( )

r r v O

v v a O

n n n

n n n

+

+

= + +

= + +

1
2

1
2

τ τ

τ τ
 

 
For the one-dimensional case this Euler step can be interpreted geometrically (Figure 1). Proceeding from the 
current state rn the gradient of the derivative field v is determined at point rn. With this gradient the new value 
rn+1 is determined by linear continuation to the next sampling point. 
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In order to calculate the trajectory as a series of discrete sampling points nτ, we obtain the following algorithm: 
 
1. Predefine the initial conditions r0 and v0. 
2. Select a time stepτ. 
3. Calculate the acceleration from the current values of r and v. 
4. Apply Euler’s method for calculating the new values of r and v. 
5. Return to step 3. 

5.2.2 Euler-Cromer method 
The following equations are a simple modification of Euler’s method (not derived here): 
 

( )
( )

v v a O

r r v O

n n n

n n n

+

+ +

= + +

= + +

1
2

1 1
2

τ τ

τ τ
 

 
The small alteration lies in the fact that the velocity newly calculated in the observed time step is used for 
calculating the new position vector. Note that the equations can only be calculated in the stated succession for 
this reason. This method has the same truncation error as Euler’s method, but it works much better in some 
cases. 

5.2.3 Midpoint method 
The midpoint method is a mixture of Euler’s method and the Euler-Cromer method: 
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Figure 1: Geometrical interpretation of Euler’s method (one-dimensional) on the basis 
of a simple system of solutions (exponential functions). 
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Here, the mean of the two velocity values are taken which raises the order of the position equation by 1. 
Inserting the first into the second equation yields: 
 

r r v an n n n+ = + +1
21

2
τ τ  

 
This equation is exact if the acceleration a is constant. This makes the method interesting in case of problems 
with a steady and slowly changing acceleration. 

5.2.4 Verlet method 
The Verlet method has the order 4 in the position equation and thus is especially suitable for problems in which 
this variable is of particular relevance. Moreover, the position equation can also be solved alone, if the force or 
acceleration depends on the position exclusively and the velocity is of no interest. For deriving the Verlet 
method we calculate with the first and second derivatives of the position and approximate them according to the 
centered formula for the first and second derivative, respectively: 
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A conversion yields: 
 

( )
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v
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The disadvantage of this method is that it is not ”self-starting“, i.e., knowing the initial values r0 and v0 is not 
sufficient to iterate the trajectory. On the contrary, r0 and r1 must be known, which generally is not the case. In 
order to start the iteration, r1 can be calculated according to Euler’s method and then be further iterated using the 
Verlet method. 
Remark: If the acceleration does not depend on the velocity, the position equation can be iterated alone without 
calculating the velocity. 

5.3 Global and local truncation error 
Depending on the method applied, a truncation error occurs at each  time step, e.g. of order O(τ2) for Euler’s 
method. This error is called local error in the following, as it occurs per time step. Considering a time interval 
of  T= Nτ for calculating the trajectory (hence N time steps), we maximally obtain the following global error in 
the observed variable at the end of the time interval: 
 

( ) ( ) ( ) ( )1=
error localerror global

−==

×∝
nnn TOOTNO

N
ττττ

 

 
For example, Euler’s method has a local truncation error of the order O(τ2), but a global truncation error of only 
O(τ). This equation yields only an estimate of the global error, because it is not clear, whether the local errors 
accumulate or cancel (i.e. interfer constructively or destructively). Obviously this depends on whether the vector 
field of the derivatives in the observed range of variables has points of inflection and if so, how many of them 
and also on the kind of approximation (thus on the method applied). This missing knowledge of the error 
accumulation/prpagation implies that it is generally impossible to indicate, whether a certain method is suitable 
for a certain problem. 

5.4 Runge-Kutta method of the 4th order 
To get solution formulas of a higher order we have to leave the empirical path of finding simple solutions. For 
this purpose we proceed from the general form of the initial value problem: 



 34

 

( )( )d z
dt

H z t t= ,      with  ( )z t z0 0=  

 
The simple approaches estimate the multi-dimensional derivative vector H from the current state z at time t once 
and then calculate the state at the next sampling time t+τ. For the one-dimensional case 
 

( )( )dz
dt

H z t t= ,  

 
this can be interpreted geometrically as shown above. It is imaginable to calculate several possible values of H in 
the following way: 
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The values Hi can only be calculated in the given succession. For this, an Euler step is performed twice at half 
the step size. In the second step, the derivative assessed in the first half Euler step is used. Additionally, a full 
Euler step is performed using the gradient assessed in the second half step. The values Hi can be interpreted 
geometrically (as shown in Figure 1 for the simple Euler step) (cf. Fig. 2). 
 

 
The question arises of how the state at the next sampling time (t+τ) is calculated from these four assessments of 
the derivative. It seems to be appropriate to take the weighted mean of the respective derivatives and then to 
perform an Euler step with this mean gradient. By means of the Taylor expansion (cf. textbooks) we can prove 
that the following weights are optimal, i.e., they yield a maximum order: 
 

 
Fig. 2: Calculation of the estimates of the derivatives for the 
Runge-Kutta method of the 4th order (cf. text). 
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Hence, the sum of weights is 1 as required. The gradients (H2 and H3) are weighted double. Altogether this 
procedure can be described vectorially for the general form of the initial value problem as follows: 
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The Runge-Kutta method described here is of the 4th order in each variable (i.e. in each component of z) and 
therefore has a local truncation error of the order τ5. Of course, formulas of even higher orders could be found in 
the same way, but they are more complex, i.e. require more evaluations of the function H per time step. Runge-
Kutta of the 4th order has turned out to be the best compromise between precision and complexity. All textbooks  
agree that it represents the „workhorse“ for solving the ODE, especially when it is combined with an adaptive 
step size selection with a time step τ varying according to the assessed local truncation error (cf. next section). 
Furthermore, the so-called predictor-corrector methods enable the local errors and the step sizes to be 
controlled more precisely and also enable a correction term to be calculated for a higher precision. These 
methods will not be described in this context. Please refer to relevant textbooks. 

5.4.1 Adaptive step size selection 
The step size should be selected such that it is a fraction of the system-inherent time scales (e.g. 1/50th of the 
oscillation period of the system)7. Nevertheless, the system can reach states with strong differences in the 
absolute value of the derivative field in the course of time development. In case of large derivatives (i.e. large 
changes of the state of a system), a small time step has to be used in order to keep the local error below a 
predetermined bound. Within ranges of slowly changing states of a system, larger step sizes are sufficient. The 
number of states to be calculated can be minimized by adaptive step size selection. The additional time required 
for calculating the step sizes is less than the saved calculation expenditure in most cases. 
The object of the adaptive calculation of step sizes is to assess the local truncation error for each time step anew 
and to select the step size such that it keeps below a predetermined bound. For this purpose the new state of a 
system is calculated twice, once via one step with the current step size and once via two steps with half the step 
size: 
 

( ) ( )

( ) ( ) ( )

z t z t

z t z t z t

→ → → +

→ + → +

        1
1
2 2

τ

τ τ
 

 
The local truncation error is assessed as the difference of both values: 
 

∆z z z≈ −2 1  

 
Then the relative error can be assessed as follows: 

                                                           
7 Systems with strongly differing time scales are problematic. The shortest time scale always determines the step 
size so that short step sizes have to be used, even if the long time scales predominate. These so-called stiff ODE 
are often resolved with implicit schemes (cf. textbooks). 
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Since the local truncation error is proportional to the fifth power of the step size τ (Runge-Kutta 4th order), the 
current values of step size and truncation error can be related to the values to be expected upon selection of a 
new step size τnew: 
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This equation can be written equally for the relative errors, because the scaling factors are cancelled.With a 
predetermined relative error bound r (e.g. 10-3) the new step size can thus be calculated, which keeps within the 
predetermined error bound according to the relative error assessed before. Therefore, the equation is resolved for 
τnew: 
 

( )

51
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


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
=

zr
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An additional factor of safety S≅0.9 is incorporated such that the change will not become too large. Moreover, 
the new step size should not shift to higher or lower values by more than a predetermined factor (factor about  4 
and ¼, respectively). Such a limitation is necessary, because the assessment and the quotient in the equation 
above may become singular. 
The step size is repeatedly reduced per time step according to the given formula (including limitation), until the 
truncation error assessed with the new step size becomes smaller than the given truncation error. Vice versa, the 
step size is increased once only per time step. Thus, we reduce the danger that the time step becomes too large 
due to inaccurate assessment of the truncation error, which may extremely impair the precision. Assessing the 
time step too small will lead to a higher expenditure of work, but will not reduce the precision. 
 

5.5 Application of various methods to solve initial value problems 
The presented methods can be applied to different simple physical systems. Some of them are described in the 
following. The question of how these different methods behave when solving physical problems is investigated 
(partly by means of exercises). 

5.5.1 Projectile motion 

The trajectory of a ball is studied in two dimensions 
x
y







 . We assume a gravitational force in negative y- 

direction and a frictional force proportional to the square of the velocity and directed against the current 
direction of motion. The equations of motion then read: 
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with: 
 

cw ≅ 0 35.   (drag coefficient) 

ρ ≅ 12 3.
kg
m

 (density of air) 

[ ]A m2  and [ ]m kg  as the cross-sectional area and mass of the ball 
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2  gravitational acceleration. 

 
If the frictional force is negligible, the analytical solutions are known. If the ball is thrown with an original 
velocity v0 at an anagle Θ to the horizontal line, the throwing range, maximal height, and flying time are: 
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This limiting case can be used to verify the numerical solution. Moreover, a physically reasonable step size can 
be selected as a fraction of the expected flying time. The projectile motion can be integrated using Euler’s 
method (cf. Exercises). 

5.5.2 Physical pendulum 
We look at a pendulum, which is modeled as an ideal mass point of the mass m and oscillates around an axis by 
means of a massless arm of the length L. The equation of motion for this system reads (see textbooks): 
 
d
dt
d
dt

g
L

Θ

Θ

=

= −

ω

ω
sin

 

 
g being the gravitational acceleration. The angular acceleration is a nonlinear function of the elongation and 
there is no analytical solution. For small excursion angles Θ, however, the equation can be linearized: 
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sin Θ Θ Θ≈ ⇒ = −
d
dt

g
L

ω
 

 
For this mathematical pendulum we obtain the solution: 
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If the ratio L/g is normalized to 1, the oscillation period T0 equals 2π. The step size can then be adjusted as a 
physically useful fraction of the oscillation period. Using the law of conservation of energy it can be checked, 
whether the numerical solution is physically correct. For this purpose the total energy 
 

E mL mgLges = −
1
2

2 2ω cos Θ  

 
is numerically calculated for each time step and plotted as a function of time (see Exercises). 
 
Nonlinear effects are found at large elongation angles as a deflection of the oscillation form in relation to the 
sine function. In this case the oscillation period also depends on the maximum excursion angle θm (for derivation 
see next subsection): 
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For smaller θm the formula turns into the above-mentioned formula for the linear case. K is the complete elliptic 
integral of the 1st category: 
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If a frictional force proportional to the angular velocity as well as a harmonic excitation are introduced in 
addition to the nonlinear term of the restoring force, a path into deterministic chaos can be demonstrated by this 
simple system: 
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If the excitation amplitude is sufficient for the pendulum to overturn, this leads to a chaotic motion depending on 
damping and excitation. For further analysis, the trajectory of motion can be observed in the phase space, i.e. 
the space spanned by Θ and ω. If only points of the trajectory are plotted, which belong to a certain phase of 
excitation (e.g. zero phase), this leads to the so-called Poincaré section. If the motion is periodic there are only 
a  few entries in the Poincaré section, the number of points indicating the multiplicity of the oscillation period 
relative to the excitation period. The path into chaos can then be understood with the help of the so-called period 
duplication (bifurcation): Plotting the Poincaré points (only Θ components) as a histogram as a function of the 
excitation amplitude, we obtain windows with periodic motions. With increasing excitation amplitude, the 
multiplicity of the period doubles. A multitude of such period duplications then leads to chaotic motions. This is 
an example of deterministic chaos: The underlying equation is well-defined and deterministic. Nevertheless, the 
motion is not predictable, because it extremely depends on the initial conditions. Additionally, the truncation and 
roundoff errors accumulate when pursuing the numerical calculation, leading to unpredictable global errors. 
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5.5.2.1 Derivation of the formula for the oscillation period 
The undamped physical pendulum oscillates periodically. The maximum excursion be θm. At the stationary 
point, i.e. at θ = θm , the angular velocity ω equals 0. The total energy at this point then is 

mges mgLE
m

Θ−=
Θ=Θ

cos  . 

Due to the constancy of the total energy we obtain for all time points 
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In the time period from t = 0 to t = T0/4 (1/4 of the required oscillation period) the pendulum oscillates from θ = 
0 to θ = θm. Thus, both sides of the equation can be integrated: 
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An evaluation of the expression by means of the above-mentioned complete elliptic integral of the 1st category 
yields the above-mentioned formula for the oscillation period T0. 

5.5.3 Planetary motion 
We observe the motion of a body in a central potential, e.g. a comet in the gravitation field of the sun. 
Neglecting all further forces (such as planets, solar wind etc.) the force affecting the body in the coordinate 
system of the sun is: 
 

( ) r
r

GmMrF 3−=  

 
m being the mass of the body, M the mass of the sun, and G the gravitation constant. It is useful to calculate in 
astronomical units. Then, GM=4π2 AU3/yr2 with AU=1.496x1011m being the average distance between sun and 
earth, and yr being one year. Furthermore, the mass m of the body can be set to 1. The equation of motion can 
now be integrated numerically. From Kepler’s laws we know that the solutions are ellipses. Furthermore, total 
energy and angular momentum 
 

( )E m v
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are conserved. These physical boundary conditions allow for a verification of the numerical solution. 
Conservation of energy and angular momentum are also applicable to the verification of numerical solutions of 
many-body problems, which cannot be solved analytically anymore. 
Applying the different methods, we find that Euler’s method fails for (approximately circular) orbits, while the 
Euler-Cromer method is particularly suitable. In case of eccentric motion the Euler-Cromer method fails, too. In 
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this case, the adaptive Runge-Kutta method of the 4th order is the favourable method, which also applies to 
three- or many-body problems. 

5.5.4 Lorenz model 
The weather was previously assumed to be unpredictable only because of the great number of variables. 
Consequently, the development of efficient computers nourished hopes that they would enable long-term 
forecasts. This hope had to be abandoned. We know today that the weather is intrinsically unpredictable, 
because the underlying equations are nonlinear and their solution reacts extremely sensitively to changes of the 
initial conditions (“butterfly effect”). This can already be demonstrated by means of systems with few variables. 
For example, E. Lorenz investigated a model with three variables which describes the convection of a liquid 
between two parallel plates with a constant difference in temperature: 
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y x
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The derivation of the model is found in textbooks (e.g. H.G. Schuster: ”Deterministic Chaos“). Please note that x 
represents approximately the circular flow rate, y the temperature gradient between rising and dropping liquid 
volumes, and z the deviation of the course of temperature from the equilibrium (thermal conduction only). The 
parameters σ and b depend on the properties of the liquid as well as on the geometry of the plates. Typical 
values are σ = 10 and b = 8/3. The parameter r is proportional to the imposed temperature gradient. 
In order to investigate the sensitivity of the system to the initial conditions, it is the obvious thing to integrate the 
equations with two slightly different initial conditions (Runge-Kutta with adaptive step size) and to plot the time 
courses of the variables for comparison (cf. Exercises). Moreover, it is an obvious choice again to represent the 
trajectory in the phase space. It moves on an aperiodic orbit which is relatively well localized in the phase space, 
i.e. on an attractor (cf. Exercises). 

5.6 Boundary value problems 
So far, only the initial value problem has been treated: From a completely known initial state the temporal 
development is iterated. Of course, as many initial values as there are integration constants have to be specified. 
However, they do not need to be determined at a fixed time t0. This leads to the so-called boundary value 
problems, in which part of the initial state at t0 and part of the final state after a time T are given. For example, 
the locations at times t=0 and t=T may be predetermined for a projectile motion, but the velocity may be 
unknown. Then the above-mentioned formulas for calculating the temporal development cannot be directly 
applied any longer. Instead, assumptions about the complete initial state would have to be made, it would have 
to be iterated according to the above-mentioned formulas and varied until all boundary conditions were fulfilled. 
Of course, this means that the trajectory has to be calculated many times, until the right one is found. Relaxation 
methods are better suited to resolve boundary value problems. They are explained when treating partial 
differential equations (see below). 
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5.7 Exercises 
 
1. Write a function ball, that numerically calculates the trajectory of a volleyball in two dimensions. Apply 

Euler’s method to this problem. The initial conditions of the problem ( )Gx 0 and ( )Gv 0 should be stated as 
parameters. The trajectory should be represented graphically and the time of flight and throwing range 
should be calculated. Hint: A moving ball is decelerated by air friction as follows: 

vv
m
Aca wfriction

GGG ρ5.0−=  with  

cw ≅ 0 35.   (drag coefficient) 

ρ ≅ 12 3.
kg
m

 (density of air) 

[ ]A m2  and [ ]m kg  as the cross-sectional area and the mass of the ball. 

 
Gravitation should not be neglected, either. 
 

2. Calculate the oscillatory behaviour of a physical pendulum using Euler’s and Verlet’s methods. The function 
pendulum should expect the initial conditions as well as step size and kind of solution (Euler / Verlet). The 
elongation angle and the total energy in dependence on time are to be plotted. 
Recall the equations of motion: 
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The total energy of the system is: 

( )E m L m g L= −
1
2

2 2ω cos Θ  

Hint: 

Set  
g
L

= 1 to simplify matters and observe the standardized energy 
E

m L⋅ 2 . 

Examine the cases [ ]Θ0 10 0 1= =° ; ,τ and [ ]Θ0 10 0 05= =° ; ,τ using Euler’s method and  

[ ]Θ0 10 0 1= =° ; ,τ  and [ ]Θ0 170 0 1= =° ; ,τ using Verlet’s method! 
What can we say about the suitability of the methods for this problem ? 

3. Observe the harmonically driven, damped physical pendulum: 
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a.) Integrate the system using Verlet’s method. Set ω0 1= ≡
g
L

 and calculate about 80 periods 

(t=0 -   80*2π). Write a plot program drawing the trajectory in the phase space (ω over Θ) as well as the 
elongation Θ and the total energy as a function of time. 
b.) Generate the following oscillatory behaviour by an appropriate selection  of parameters: 
             (i) Oscillation of a damped pendulum without excitation (Hint: Start with 
                 A0 = 0 and vary the damping α until the pendulum dies off after about 5-10 
                 periods from a starting position of Θ =90 Grad). 
             (ii) Limit cycle (Hint: low damping and low excitation, oscillation without 
                  overturn). 
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             (iii) Beating (Hint: no (!) damping and low excitation, oscillation 
                    without overturn). 
             (iv) Chaotic motion (Hint: Increase excitation up to and beyond an 
                    overturn). 
    Explain the different types of oscillations and document the sets of parameters found. 
c.) Proceeding from b.), generate a Poincaré section by plotting only those points in the phase  
      space that belong to the zero phase of excitation: 

              ( )A A t t n n N= = ∈∗ ∗
0 0 0 2sin , ,ω ω π                . 

       Reject those points that are taken during the build-up time (about 20 periods, i.e. until 
       t=40*π). What can we tell about the four cases of b.)? 
d.) Plot the Poincaré points (Θ-components) as a histogram as a function of the excitation amplitude 
      (“bifurcation diagram”). Generate a bifurcation diagram with excitation amplitudes  
      between approx. 0 and 5 rad/s with a step size of 0.5 rad/s. Use the value of damping 
      from exercise 1.b.i). Identify the interesting range of transition from periodic to chaotic 
      motion and calculate this area with a solution of von 0.1rad/s anew. Describe the result. 

4. Observe the body in the central potential. It is affected by a gravitational force: 
 

( )F r
GmM

r
r= − 3  

 
a.) Program the adaptive Runge-Kutta method of the 4th order. For this write a function  
      [x, t, tau] = rka(x,t,tau,err,derivsRK,param) for calculating a time step, with: 
       x = current value of the dependent variable 
       t = independent variable (usually time) 
      tau = current step size 
      err = desired local truncation error (appr. 10^-3) 
     derivsRK = right side of DE (name of function returning dx/dt 
                        (calling format: derivsRK(t,x,param)). 
     param = extra parameter of derivsRK 
      x = new value of dependent variable 
      t = new value of independent variable 
      tau = recommended value for tau for next call of rka 
b.) Integrate the system with Euler-Cromer and rka for a circular and an eccentric path. Plot 
      each trajectory in the position space for 10 periods as well as  the course of the total energy. 
      How do the two methods differ? 
c.) Draw a log-log plot of the step size determined for each step by rka as a function of the related radial 
distance from the origin for the eccentric path. Which law can be derived? (Hint: Kepler’s laws). 

5. Observe the Lorenz model 
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y x
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Integrate the system with rka. Plot x and z as a function of t as well as  the trajectory in the phase space (zx- 
and yx-projection). Use the parameters σ =10, b=8/3 and r=28 as well as the initial conditions: 
a.) x=1, y=1, z=20 
b.) x=1, y=1, z=20.01 
 
How do the paths belonging to the different initial conditions differ?
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6 Solving systems of equations 
 
The preceding section dealt with the solution of ordinary DE 
 

( )( )d z
dt

H z t t= ,      with the initial state   ( )z t z0 0=  

 
Starting from the initial state, the temporal development of the system can be determined as a series of states 

( )z nτ , e.g. by means of the Runge-Kutta method. So far, only autonomous systems have been treated in 

which the force and thus H does not explicitly depend on time, i.e. ( )( ) ( )( )H z t t H z t, = . For this class of 

systems there often exists a class of initial conditions z 0
∗ for which ( )z n zτ ≡ ∗

0 . These states in the N-
dimensional phase space (state space) are called stationary. The following equivalence is easy to realize: 
 

( ) 0          state stationary  0 ≡⇔ ∗∗ zHz    , 
 

because the latter condition means 
d z
dt

≡ 0 . The vector equation ( )H z∗ = 0  contains N equations with N 

unknown quantities. Therefore, the roots of this system of equations have to be found in order to find the 
stationary states. This problem is divided into two classes. If H is a linear function in z or can be linearized in the 
surrounding of expected stationary states, methods of linear algebra can be used to solve the problem. If H is 
nonlinear (e.g. the physical pendulum comprises the nonlinear cosine-function), Newton’s gradient method can 
be applied. Both classes of equations are explained in the following. Additionally, there are special methods in 
case H is a polynomial in z, which will not be treated in this context (please refer to textbooks and to the 
function roots in Matlab, which finds zeros of polynomials). 

6.1 Linear systems of equations 
A linear system of equations generally consists of M equations with N unknown quantities: 
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xi being the unknown quantities to be determined and aij  and bi the (fixed) coefficients. This system can be 
written in a matrix form8: 
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A being the (MxN) matrix of the coefficients, x, the (unknown) solution vector, and b, the vector of the 
coefficients of the zeroth order. Example: 
 

                                                           
8 Matrices are marked by a double underscore. 
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Regarding the dimensions of the problem (MxN) three cases are distinguished: 
 
1. M>N: The system is overdetermined, i.e. there are more equations than unknown quantities. In this case – 

if the equations are linearly independent – only an approximate solution is possible (see next chapter). 
2. M<N: The system is undetermined, i.e. there are less equations than unknown quantities. The solutions x 

lie within a solution space of the dimension N -M.  
3. M=N: The system has a well-defined solution, if all equations are linearly dependent (determinant of A 

being not equal to zero). If equations are linearly dependent, case 2 applies. 
 
In the following all three cases are treated. For case 3 the elementary Gaussian and Gauss-Jordan methods are 
applied, while the method of singular value decomposition is presented for cases 1 and 2. The latter is widely 
applied in linear algebra. 

6.1.1 Elementary operations 
Basic algorithms for solving systems of equations (Gaussian and Gauss-Jordan methods, respectively), use 
operations which do not alter the result (i.e. the solution vector x). These operations are called elementary 
operations. The following elementary operations are feasible: 
 

 Operations Meaning 
1 Exchange of rows in A and b Exchange the sequence of two equations 
2 Form linear combinations of rows 

in A and b  
Form linear combinations of equations 

3 Exchange columns in A Exchange variables 
(see remark) 

 
Remark: Operation 3 means that the sequence of components in the solution vector x is permuted. The 
permutations have to be made undone in order to obtain the original solution (exchanging, for example, the 
components position and velocity would be a fatal error). If several operations of type 3 are performed, they 
must be made undone in the reverse order. This requires a corresponding “bookkeeping“, i.e. memorizing the 
operations of type 3 performed. 
 
Example: 
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All systems of equations on the right-hand side have the same solution (considering the exchange of the solution 
components in case 3). 

6.1.2 Gaussian elimination with backsubstitution 
This method is suitable for case 1 (M=N). The underlying idea is to first convert the system by means of 
elementary operations such that the matrix A takes on an upper triangular shape: 
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Remark: The components of A and b are written here with apostrophe, since the numerical values have changed 
due to the elementary operations used for finding  the triangular shape. 
 
When the system is in the stated triangular form, the components of the solution can be iteratively determined by 
means of backsubstitution: 
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All components of the solution can be calculated from the first equation and by iteration of the last equation. 
Proceeding from xN , xN-1 is calculated etc. 
 

6.1.2.1 Generating the triangular shape and pivoting 
The triangular shape required for the backsubstitution can be generated as follows: 
 
1. Start out from the diagonal element a11. 
2. Subtract the a1j / a11-fold of the first row from each row j below the diagonal element. This results in zeros 

in the 1st column below the diagonal element. 
3. Proceed to the next column and continue at with 1, however, starting out from the diagonal element of the 

actual column. 
 
The problem inherent to this method is caused by the numerical errors occurring upon division by the respective 
diagonal element. The element by which we divide is called the pivot and the (empirically founded) method for 
minimizing the error is called pivoting. Pivoting means that the rows below and the columns to the right of the 
currently observed diagonal element (including the row and column with the current pivot) are exchanged such 
that the biggest element becomes the pivot (elementary operations 1 and 3). Partial pivoting means that only 
rows are exchanged. Here we save the necessary “bookkeeping“ when exchanging columns. Partial pivoting is 
empirically found to be sufficient in general. 
 
Remark: If the pivot (following pivoting) reaches the range of machine precision, the procedure is numerically 
instable. If the pivot equals zero, this may indicate that the system of equations is really singular (determinant = 
0), or that the value 0 has accidentally resulted from numerical inaccuracies. Hence, the problem cannot be 
clearly analysed on the basis of the quantity of the pivot. In case of a small pivot we can only state that the 
solution is instable or that the system may be even singular. The solution should be verified by evaluating the 
equation using the estimated solution in that case. 
 

6.1.2.2 Iterative improvement of the solution 
The described Gaussian method comprises many calculation steps so that calculation errors may accumulate. 
Therefore, the numerically found solution will generally deviate from the true solution by an amount larger than 
the machine precision. In the following a method is described that allows for an iterative improvement of the 
solution up to the order of magnitude of the machine precision. The approximate solution for the system of 
equations  
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bxA =  

 
found using the Gaussian method be x‘ and x be the (unknown) true solution. By insertion the solution can be 
verified: 
 

′=′ bxA  

 
We define the numerical errors as: 
 

bbb

xxx

−′=

−′=

δ

δ
 

 
δb is known (and is, as mentioned above, generally larger than the machine precision), while δx is unknown, 
because the true solution x is unknown. δx can, however, be calculated proceeding from the approximate 
solution and utilizing linearity: 
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The linearity of the system is utilized in the third equation. Because x is assumed to be the true solution, the first 
addends on both sides of equation 3 can be dropped. Resolving the system of equations written in the fourth row 
(applying the Gaussian method again), we obtain an approximate solution δx‘ for the true error δx. The 
improved estimate of the solution is then: 
 

′−′=″ xxx δ  
 
This method can be iterated until the error δb reaches the order of magnitude of the machine precision. For this 
purpose the improved solution x‘‘ is again inserted into the system of equations, a new δb is calculated, a new δx 
is determined etc. The drawback of the described method is that the system of equations has to be resolved 
several times. This expenditure of time is only justified in case a particularly precise solution is required. 
 

6.1.3 Gauss-Jordan method 
Gaussian elimination with backsubstitution is the most favourable method for calculating the solution in case 1 
(M=N) regarding the expenditure of time. However, if the inverse matrix A-1 is to be calculated in addition, an 
extended procedure known as the Gauss-Jordan method is more appropriate. For this purpose the following 
matrix equation is defined: 
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We can explain this formulation as follows: N+1 systems of equations are established simultaneously, each 
column in [b∪1] and [x∪Y] representing an individual, independent system of equations. These systems can be 
resolved simultaneously by converting matrix A into a unit matrix using elementary operations (Remark: Each 
elementary operation then influences each column of [b∪1]) separately, as described above for the case of one 
column. The right side of the equation then represents the unknown x which solves 
 

bxA =  

 
and the unknown Y which solves 
 

1=YA  . 

 
Thus, Y is the inverse of A. 
 

6.1.3.1 Generating the unit matrix 
The unit matrix can be generated with the following scheme which strongly resembles the Gaussian method: 
 
1. Go through matrix A column-wise, starting out from column 1. i be the current column. 
2. Take the diagonal element aii as pivot and perform pivoting. 
3. Divide row i by the pivot. Hence, the diagonal element assumes the value 1. 
4. Set the values of all other rows in column i to zero by subtracting the aji–fold of the i-th row from the j-th 

row (for all rows j except the i-th row itself). 
5. Proceed to the next column i+1 and continue with 2. 
 
The notes from 6.1.1.1 on the numerical stability hold also for this extended method. 
 

6.1.4 Singular value decomposition 
As indicated above, the Gaussian and Gauss-Jordan methods are not suitable for systems of equations which are 
almost singular because of the repeated division by the respective pivot. Moreover, it is not suitable for 
overdetermined and underdetermined systems. In the following a method is presented that is numerically very 
stable and is suitable for all classes of systems of equations. Furthermore, it enables a clear diagnosis of the 
system’s numerical stability. In the literature this method is mostly called SVD (singular value decomposition). 
SVD is based on a theorem of linear algebra the proof of which is not given here (refer to textbooks of linear 
algebra). It says that each MxN matrix A with M≥N can be decomposed as follows: 
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U and V being column-wise orthonormal, i.e.: 
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We will not deal with the details of how the decomposition is calculated. It is important to know that stable and 
efficient algorithms are available for this purpose. In the following it is shown, how SVD can be used to 
calculate the solution of linear systems of equations in the different cases. 
 
Remark: The command SVD is available in Matlab. Attention: There are several variants of singular value 
decomposition. The variant presented here is calculated by the SVD command, if 0 is given as additional 
parameter: [U,S,V]=svd(A,0)). 
 
Remark: SVD is also feasible in the case of M<N (underdetermined system), however,  N-M of the singular 
values are then equal to zero and the column-wise orthonormality of U and V does not apply to those columns 
containing the zeros in the matrix of the singular values. 
 

6.1.4.1 SVD of a quadratic matrix (case M=N) 
In the case of M=N all matrices involved are quadratic. Then, row-wise orthonormality also applies to U and V, 
i.e.: 
 

1=⋅=⋅ TT VVUU is valid. 

 
U and V thus are orthogonal and 
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Then, the inverse of matrix A is yielded as 
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and the solution of the system of equations is: 
 

( ) bUwdiagVbAxbxA T
j ⋅⋅⋅==⇒= − 11 . 

 
This method will only go wrong, if one or several of the singular values become zero or lie within the order of 
magnitude of machine precision. The more singular values get small the more instable the solution. In the first 
place SVD enables a clear diagnosis of the situation owing to the analysis of singular values. Two cases are to 
be distinguished (εm: machine prescision):  
 

(i) The matrix is ill-conditioned, i.e. 
1,

1,

min

max

j N
m

j N

wj

wj

ε∈

∈

     <    

 

(ii) The matrix is singular, i.e. Njwj j ,1,0: ∈=∃  
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6.1.4.1.1 Case (i): „ill-conditioned“ 
Formally, there is a unique solution in case (i). However, the Gaussian and Gauss-Jordan methods are 
numerically instable in this case, whereas SVD yields a generally more robust and more precise solution in the 
following way (without proof): 
 





 <

=′

⋅⋅




 ′⋅=

sonstw
w

w

bUwdiagVx

j

mj
j

T
j

1
0

1

 with,1

ε  

 
i.e., we simply eliminate those singular values the value of which is not exactly known. This is illustrated by the 
fact that we throw out those equations and their combinations which more or less contain round-off errors only 
by setting the 1/wj to zero. The solution x found in this way is generally better in the least-squares sense than the 
solutions yielded by other methods (Gauss elimination, Gauss-Jordan), i.e. 
 

22 bxAr −=  

 
becomes smaller. The proof is not given here.  

6.1.4.1.2 Case (ii): singular 
The case (ii) is mathematically more complex. The inverse matrix A-1 does not exist in this case, however, the 
system of equations 
 

bxA =  

 
can have a solution space as solution. The equation 
 



 =

=′

⋅⋅




 ′⋅=

otherwisew
w

w

bUwdiagVx

j

j
j

T
j

1
00

1

 with,1
 

 
yields an “as optimal as possible“ special solution (without proof).  “As optimal as possible” means that 
 

22 bxAr −=  

 
becomes minimal and that x has the minimum length of all vectors within the solution space. The solution space 
L is yielded as the sum of the so-called nullspace and the special solution: 
 

{ }NxxxL ∈′′+= :  
 
The nullspace N is defined as follows: 
 

{ }0: == xAxN  

 
Thus, the nullspace contains all vectors mapped on zero.  
 
Remark: Those columns of V containing zeros in the related matrix of singular values (diag(wj)) span the 
nullspace (without proof). 
 
Remark: Those columns of U containing zeros in the related matrix of singular values (diag(wj)) span the range 
(without proof). The range is the set of all vectors b, for which the system of equations Ax=b has  at least one 
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exact solution. If b lies within the range of A, the above-mentioned special solution is exact. If b lies outside the 
range, the least-squares condition applies. 
 
Remark: The case (ii) mathematically corresponds to the underdetermined system (M<N), which therefore can 
be resolved in the same way. 
 

6.1.4.2 SVD for overdetermined systems (case M>N) 
In case there are more equations than unknown quantities there is generally no exact solution to the system of 
equations. SVD, however, finds the “optimal” approximate solution again (without proof): 
 

( )
minimal being     :with

1
22 bxAr

bUwdiagVx T
j

−=

⋅⋅⋅=
 

 
Remark: Again, singular values smaller than the machine precision may exist here. Replace them by zeros 
again in the matrix of inverse singular values. 
 

6.2 Nonlinear systems of equations 
When a system of equations cannot be linearized, the algebraic methods of linear algebra described above 
cannot be applied. There is no choice but to apply iterative methods, of which Newton’s gradient method is 
described below as a simple example. 

6.2.1 Newton’s method 
The gradient method searches the zeros of a system of equations by taking steps in the direction of the gradient 
starting from the current estimate of the zero. Let us assume that z* is the solution of the system of equations 
 

( ) ( ) ( )( ) ( )NN zzzzhzhHzH …… 11 andwith0 ===  
 
(Remark: H and z are row vectors here). Let us further assume that z1 is the estimate of the solution, which 
deviates from the true solution by δz, i.e. 
 

∗−= zzz 1δ . 
 
With this definition and assuming z* to be the true zero, a Taylor expansion of the 1st order yields: 
 

( ) ( ) ( ) ( ) ( )2
1110 zOzDzzHzzHzH δδδ +⋅−=−=≡ ∗  

 
with the Jacobi matrix D: 
 

( ) { } ( )
i

j
ijij z

zh
DDzD

∂

∂
== ,  

 
Neglecting the terms of higher order we thus obtain: 
 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )1

1
1112

1
1

1

11

2
110

zDzHzzzz

zDzHz

zDzzH

zOzDzzH

−

−

⋅−=−=⇒

⋅≈⇒

⋅≈⇒

+⋅−=

δ

δ

δ

δδ

 

 
z2 is a new estimate of z*, which can be iteratively inserted into the last equation again. 
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6.3 Exercises 
 

1. The matrix A =

















1 2 3
7 3 4
8 9 15

 and the vector b =

















1
2
4

be given. Solve the linear system of 

equations Ax b=  and calculate the inverse matrix A−1 . Use the supplied Matlab script gaussj.m, which 
performs the Gauss-Jordan elimination procedure. Try to understand the program and compare the result 
with the installed Matlab functions inv (calculation of the inverse) and \ (calculation of the solution of the 
linear system of equations; type ”help slash“ for hints on use). 
 

2. The matrices 

A =
−
−

















1 5 3
2 10 0
2 8 8

  ,  B =
− −















10 8 9
6 10 2
1 7 3

  and  C =

− −
−
− −
− − −



















4 6 2 5
8 7 5 7
1 4 0 10
6 1 4 0

 

be given. Find the inverse matrices using the script gaussj.m. Why does this go wrong in all cases? In which 
cases should a solution exist (calculate the respective determinants) and how could we still obtain a result 
with this script in these cases? (Hint: ”pivoting“) 
 

3. The Lorenz model 
 

( )dx
dt

y x

dy
dt

rx y xz

dz
dt

xy bz

= −

= − −

= −

σ  

 

be given. 
a) Show that it has the following stationary states: 
 x y z∗ ∗ ∗= = = 0  and ( ) 0,1,1 ≠−=−±== ∗∗∗ σifrzrbyx  
b) Search the stationary states for r=28, σ =10 and b=8/3 using Newton’s method. Perform the calculation 
for        several different initial estimates of the stationary states. How does the solution depend on it? 
 Hint: Use the supplied routine newtn, which implements Newton’s method. Then write a  
 routine [H,D]=fnewt(z,p), which calculates the function H as well as the Jacobi matrix D  
 from the current state z=(x,y,z) and the set of parameters p=(r,σ,b).
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7 Modeling of data 
Modeling of data is of great relevance when validating physical theories and models. In most cases some 
parameters of the physical models are to be fitted to measured data and it is to be investigated to what degree the 
fitted model describes the data. This procedure is illustrated by means of simple examples in the following. In 
particular the techniques of fitting parameters and of assessing the goodness of fit will be described. 

7.1 General mathematical formulation of the fitting problem 
Let us assume N samples of data pairs (xi,yi) and a model to be fitted which predicts a functional relationship 
between the dependent quantity y and the independent quantity x: 
 

( )















==

Ma

a
aaxfy #

1

with,  , 

 
a being a vector consisting of M model parameters9. Of course, there should be clearly more data pairs than 
model parameters, i.e. N >> M. 
 
The activity of a radioactive isotope be given as an example: 
 

( ) 







=⋅== −

2

1
1 with, 2

a
a

aeaaxfy xa  

 
y corresponding to the activity, x is the time and the parameters a1 and a2 describe the scaling of activity and 
decay rate. The model describes an exponential decrease in activity. 
 
To simplify the expressions used later on we also write the data in vectors: 
 
















=
















=

NN y

y
y

x

x
x ##

11

,  

 
The general procedure for fitting the model is as follows: 
 
1. Define a ”merit function“ K (or: “cost function”) describing the deviation of the model from the data. The 

larger the deviation of the model from the data, the larger the merit function. This monotonous relationship 
applies to the least-squares merit function for example, which is defined as the sum over all data pairs of the 
squared deviations of the values of dependent variables assessed by the model from the actual data, i.e.: 

( ) ( )
2

1

,,, ∑
=

−=
N

i
ii axfyayxK . 

2. Minimize the merit function for a given data set by varying the parameter a. 
 
The result of the fitting should then be: 
 
1. Statement of the best set of parameters aopt (best fit) corresponding to the minimum of K. 
2. Estimation of the error of parameters, i.e. statement of a range in which the ‘true’ parameters are found with 

a given probability. 

                                                           
9 The problem is formulated here without limitation for one independent and one dependent variable. In case of 
several independent variables, all of them enter the model function as arguments. Likewise, the model may 
predict several dependent variables so that the model function would be a vector-valued function. 
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3. Statistical statement about the quality of the model (”goodness of fit“), i.e. clarification of the question of 
whether the model is suited to describe the data sufficiently. 

 
The last two points are often omitted, maybe, because they are time-consuming and difficult to understand. 
However, they belong to a systematic model analysis. In the following methods of model fitting are described. 
In each case the questions of which is the best merit function, how the merit function can be minimized, and 
how the fit is to be assessed will be clarified. 
 

7.2 Establishing the merit function: Maximum-Likelihood Methods 
The Maximum-Likelihood concept (ML method) allows to derive well-defined merit functions K, which are 
adapted to the respective fitting problem. The idea is to calculate the probability W that the observed data are 
generated by the model starting out from a statistical model of the measuring process. The negative logarithm of 
this probability is then used as the merit function K: 
 

( ) ( ), , log

: probability that the observed data are generated by the model

K x y a W

W

= −
 

 
The set of parameters that minimizes K is stated as the best fit aopt: 
 

( )( ) ( )( )





== a,y,xWa,y,xKa

aa
opt argmaxargmin  

 
The minimization of K corresponds to the maximization of the probability W due to the monotony of the –log(x) 
function. Why is this procedure not called “Method of maximal probability” instead of “Maximum-Likelihood 
method“? The answer to this question is that the statement of the probability W refers to data and not to the 
model parameters: If the model is correct, there is only one “true” set of parameters and to state the probability 
of the set of parameters makes no sense. Therefore, the expression likelihood of a set of parameters is defined as 
follows: 
 

The likelihood of a set of parameters a corresponds to the probability W that the 
observed data are generated by the model with this set of parameters 

 
In the following, examples are given of how W and K, respectively, can be calculated from assumptions on the 
statistics of the measuring process. In particular, the statistical prerequisites of the measuring process are 
explained which render the least-squares merit function optimal in the sense of the ML concept. Starting from 
that fact, extensions of the least-squares method are stated based on slightly changed statistical assumptions on 
the measuring process (Chi-square method and robust fit methods). 
 
Remark: The ML method does not detect systematic errors of the measurement process, but only models 
random errors. Systematic errors lead to a misfit of parameters. 

7.2.1 Least-Squares method 
The Least-Squares method is derived on the basis of the following assumptions: 
 
1. The measurement errors are distributed as a Gaussian distribution with a fixed variance σ, i.e. they vary 

around the “true“ value predicted by the model ( )axfy ,= . 
2. All measurement errors are statistically independent, i.e. the random error of one observation is independent 

of the random error of another observation. 
 
In this case the probability that an observation with a certain deviation from the predicted value is generated is: 
 

( ) yaxfyW ii
i ∆⋅
















 −

−=
2,

2
1exp

σ
 . 
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On the basis of the statistical independence of the observations the total probability that all observations are 
generated by the given model then is the product of the probabilities of each observation: 
 

( ) 2
,1exp

2
i i

i
i i

y f x a
W W y

σ

  −   = = − ⋅∆      
∏ ∏  . 

 
Remark: The term ∆y is a constant term which turns the probability density (1st term of equation) given by the 
Gaussian distribution into a probability. It is constant and can be taken as equal for all samples. 
 
The merit function then results as 
 

( ) ( ) ( )( ) ( )yNaxfyWayxK
N

i

ii ∆−
−

=−= ∑
=

log
2

,log,,
1

2

2

σ
 

 
Since the scaling of the merit function is arbitrary (no change of the position of the minimum), the constant 
factor 2σ2 and the constant 2nd addend -N⋅log(∆y) can be omitted. As expected, we obtain the merit function of 
the Least-Squares method and the optimum set of parameters derived from it: 
 

( ) ( )( )

( )( )ayxKa

axfyayxK

a
opt

N

i
ii

,,argmin

,,,
1

2

=

−= ∑
=  

 
Remark: This derivation demonstrates the statistical prerequisites underlying the Least-Squares method which 
is often presented descriptively. They are often, but not always, fulfilled in measurements. Therefore, this 
method should never be applied unchecked! 

7.2.2 Chi-Square method 
The Least-Squares method is generalized by admitting different variances for the different observations. Of 
course, they must be known beforehand10. Thus, there are triplets (xi,yi,σi) for each sample. In this case, the 
variance cannot be extracted as a constant factor in the formula for the Least-Squares method given above. 
Hence, we obtain as the function to be minimized and optimum set of parameters: 
 

( ) ( )

( )( )ayxa

axfy
ayx

a
opt

N

i i

ii

,,,argmin

,
,,,

2

1

2
2

σχ

σ
σχ

=








 −
= ∑

=  , 

 
σ being a vector of the variances corresponding to the observations. The merit function is called the Chi-
Square. Since the Chi-Square method includes the Least-Squares method as a special case with constant 
variance, we will deal with the Chi-Square exclusively in the following. 

7.2.3 Robust Fit methods 
The assumption that the random errors are normally distributed represents a rather “rigid” marginal condition. 
The likelihood that a sample deviates from the model value by more than 5σ is infinitely low in this case. 
Therefore, the Chi-Square method will fail, if there is one single “outlier” among the observations. The merit 
function increases significantly, because the likelihood for this event is considered to be very low based on the 
assumption of the Gaussian distribution. The minimizing procedure will attempt to decrease the costs, i.e. to 
include the outlier in the model. Thus, its weight becomes too large in the merit function and the fit method does 
not react to outliers robustly. If it is not sure, whether the Gaussian distribution of random errors can be taken as 

                                                           
10 For example, the random error may be proportional to the quantity y upon reading the measuring instrument. 
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a basis, it should be considered which other distribution may be more suitable. Having found one, we can 
determine the likelihood and thus the merit function according to the above-described scheme. 
 
E.g., if outliers have to be expected, we can use a distribution that does not approach zero as fast as the Gaussian 
distribution. Then the likelihood of large deviations from the mean is not too low any longer. The Lorentz 
distribution is the obvious choice for this purpose: 
 

( )
y

axfy
W

ii
i ∆⋅







+

=
−

2,
2
11

1

σ

 

 
It resembles the Gaussian distribution within the range ±2σ, but its slopes are not so steep. As a merit function 
for the ML method based on the Lorentz distribution we obtain: 
 

( ) ( )

( )∑

∏

=
















 −

+∝









−=−=

N

i

ii

i
i

axfy

WWayxK

1

2,
2
11log

loglog,,

σ

 , 

 
The constant addend -N⋅log(∆y) has been omitted again. This merit function is significantly less sensitive to 
outliers than the Chi-Square method and the Least-Squares method, respectively (cf. Exercises), however, it is 
based on an assumption about the distribution of measuring errors (Lorentz distribution), which is only 
empirically founded. At any rate, it is better to use theoretical arguments for choosing a distribution. For 
example, the Poisson distribution can be assumed to be the theoretically correct distribution for the random error 
of radioactive decay measurements (see Exercises). 
 
Remark: If possible, the assumption of a Gaussian distribution should not be rejected carelessly, because it has 
the advantage that steps 2. and 3. of the fitting process (statement of a parameter interval where the “true” 
parameters are probably found and statement of fit quality, i.e. suitability of the model) can be solved 
statistically more “neatly” (see section further below in this chapter). 
 

7.3 Minimization of functions 
The merit function being determined, the question arises of how to minimize it. Two cases are presented here, 
which allow the majority of practical cases to be solved: 
 
1.  The Chi-Square is used as merit function and 

a) the model ( )axf ,  is linear in the parameters a (not necessarily linear in the data!). In this case, the 
minimization problem can be directly solved without time-consuming iterative algorithms (in the 
literature this case is usually called ”general linear least-squares“) 

b) the model ( )axf ,  is nonlinear in the parameters a. Then only iterative methods can be used to 
minimize the function. 

2.  The Chi-Square is not used as a merit function, i.e. distributions of the random error other than the Gaussian 
distribution are employed. In this case there is nothing left but iterative methods independent of whether the 
model ( )axf ,  is linear in the parameters a or is not. 

 
All cases are covered in the following. 

7.3.1 ”General Least-Squares“ method 
The model is assumed to be linear in the parameters a for this method: 
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( ) ( )xfaaxf k

M

k
k∑

=

=
1

,  , 

( )xfk  being an arbitrary function of the independent variable x. It can also be nonlinear, e.g. a power function 
 

( ) 1−= k
k xxf  . 

 
Then the model function is a polynomial in x 
 

( ) 12
321, −⋅++⋅+⋅+= M

M xaxaxaaaxf …  . 
 
With the general formulation of a linear function in the parameters, the Chi-Square is: 
 

( )
( )

∑
∑

=

=

















 −
=

N

i i

ik

M

k
ki xfay

ayx
1

2

12 ,,,
σ

σχ  . 

 
With the definitions  
 

{ } ( )

1 1

1

"design matrix"   with ( ) matrix

vector of normalized observations b

parameter  vector a

j i
ij ij

i

N N

M

f x
A A A N M

y

y

a

a

σ
σ

σ

= = × −

    =      
    =      

#

#

 

 
the Chi-Square can be rewritten as follows: 
 

( ) 22 ,,, baAayx −⋅=σχ  . 

 
The Chi-Square can thus be converted in this case such that it corresponds to the quadratic distance between the 
vectors A a and b. The optimum parameter vector  
 

( )( ) ( )22 argmin,,,argmin baAayxa
aa

opt −⋅== σχ  

 
exactly corresponds to the Least-Squares solution of the system of equations A a = b, because this solution just 
minimizes the quadratic distance between A a and b. The solution is known using SVD: 
 

( ) bUwdiagVa T
jopt ⋅⋅⋅= 1  , 

 
( ) T

j VwdiagUA ⋅⋅=  being the SVD of the matrix A. 
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Using SVD it is possible to solve the minimization problem in one step without iteration. Therefore, this method 
is particularly efficient and the absolute minimum is found. Additionally, any possible numerical problems can 
be solved by treating the singular values (cf. chapter on systems of equations: Setting the reciprocal value to 
zero, if the singular value is too small). 
 
Remark: The so-called normal equations are often found in textbooks as the solution of the “General-Least-
Squares”. They result from setting the derivatives of the Chi-Square to zero with respect to the parameters. 
 

( ) ( )

( ) bAaAA

Mkxfxfay

Mk
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χ
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M

i
ik
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ijji
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⋅=⋅⇔
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






−=⇒

=∀
∂
∂

=

∑ ∑
= =

!
1 1

2

!

2!

,,110

,,10

…

…

σ
 

 
The equation in the third row describes the M normal equations (second row) in a matrix form, using the above-
mentioned definitions of the design matrix, the parameter vector, and the vector of the normalized data. The 
optimum parameter vector results from matrix inversion: 
 

( ) bAAAa TT
opt ⋅⋅=

−1
 . 

 
By this method an extremum of the Chi-square function is found. It has to be verified that it is really a minimum, 
which means an additional calculation step. Altogether, a solution via SVD appears to be more suitable than a 
solution via normal equations, because the former directly yields a minimum and is numerically very robust. 

7.3.2 Methods for nonlinear fitting: The ”Simplex“ method 
If the model is nonlinear in the parameters and/or if the merit function is not the Chi-square (cases 1.b. and 2.), 
there is nothing left but iterative methods to find the minimum in “mountains” of the merit function. There exist 
several methods which search the minimum proceeding from an initial set of parameters. The simplest method is 
the Newtonian gradient method again. Its disadvantage is that the partial derivatives of the model function f have 
to be calculated (which is not always feasible) and that the method, depending on the initial values, certainly 
ends up in the nearest minimum, which may be a local minimum and not the absolute minimum. The Simplex 
method is presented below as one of the methods that neither require a partial derivative nor inevitably end up 
in the nearest local minimum. 
 
Remark: In Matlab, the function FMINSEARCH implements the Simplex method. 
 
Remark: The Simplex method and related methods can probably ”jump across“ the nearest local minimum. 
None of these iterative methods guarantees that the absolute minimum of the merit function is found! 
 
The Simplex method works as follows: 
 
1. Generate a Simplex in the N-dimensional parameter space. A Simplex generally is a geometrical figure with  

(N+1) interconnected points (or vertices) in the N-dimensional space, e.g. a triangle in two dimensions. 
Distribute the vertices of the Simplex around an initial value of the parameters in the parameter space. 

2. Calculate the merit function K on the vertices of the Simplex. 
3. Depending on the result, apply one of the elementary operations described below, which cause a move of 

the Simplex in the parameter space. 
4. Continue with 2., unless the termination criteria are fulfilled. The termination criteria are generally fulfilled, 

if the values of the merit function on the vertices of Simplex do not differ by more than a predetermined 
difference or if a given maximum number of iterations has been reached.  

 
The following elementary operations can be performed: 
 
1. Moving the vertex where the function is largest through the opposite face of the Simplex (reflection). Thus, 

the Simplex moves away from the maximum. 
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2. Like 1., however, with additional contraction of the Simplex in the dimension perpendicular to the 
reflection face. 

3. Like 2., but expansion instead of contraction. 
4. Contraction of the Simplex in one or more dimensions. 
5. Expansion of the Simplex in one or more dimensions. 
 
With each iteration the Simplex changes its position and size in the parameter space due to the elementary 
operations and thus moves “amoebia-like” in the direction of the minimum. The Matlab function 
FMINSEARCH uses empirical rules to choose the elementary operations depending on the distribution of the 
values of the merit function on the corners of the Simplex. The following figure illustrates the rules for the 
example of a tetrahedron (Simplex in three dimensions). Starting out from a current position of the Simplex, it is 
calculated what the Simplex looks like in the next step: 
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7.4 Error estimation and confidence limits 
The optimal set of parameters aopt which corresponds to the minimum of the merit function is determined by 
establishing and minimizing the merit function. Now the question of the error, or uncertainties, in a set of 
estimated parameters arises, i.e., how far does the estimated set of parameters aopt deviate from the “true” set of 
parameters atrue. For this purpose confidence regions are usually calculated stating a region within the parameter 
space, in which the true set of parameters is found with a predetermined probability. The limits of the confidence 
region are the confidence limits. For calculating the confidence regions, again different cases are to be 
distinguished (as for minimizing the merit function): 
 
1. The Chi-square is used as a merit function and 

c) the model ( )axf ,  is linear in the parameters a (”general linear least-squares“). In this case the 
confidence regions can be stated directly from the SVD solution. 

d) the model ( )axf ,  is nonlinear in the parameters a. Then the confidence regions must be calculated 
via repeated calculation of the Chi-square in the neighbourhood of the optimal set of parameters (iso-
contours of the merit function). 

2. The Chi-square is not used as merit function, i.e., distributions of the measurement error other than the 
Gaussian distribution are used. In this case only statistical methods can be applied to determine the 
confidence regions, which require the optimal set of parameters to be calculated from “synthetic”data sets 
(bootstrap method).  

 
The different methods are explained in the following. 

7.4.1 Chi-square fitting: Confidence regions of parameters 

7.4.1.1 Model function ( )axf ,  is nonlinear in the parameters 
In this case the χ2 function is evaluated on a grid within the neighbourhood of the optimum set of parameters and 
the iso-χ2 curves are determined which correspond to a change of the χ2 as compared to the minimum by 
different ∆χ2. The following table shows ∆χ2 values for several probabilities p of the true set of parameters to be 
found within the region delimited by the related iso-curve and for different numbers of parameters (without 
proof): 
 

 M 
p / % 1 2 3 4 
68.3 1.00 2.30 3.53 4.72 
95.4 4.00 6.17 8.02 9.70 
99 6.63 9.21 11.3 13.3 

 
Example: The probability that the true set of parameters is found within the region delimited by the iso-curve 
with ∆χ2 =6.17, i.e. the curve on which the value of χ2 is by 6.17 larger than in the minimum, is 95.4% with two 
parameters (M=2). This region is called the confidence region on the confidence level p = 95.4%.  
 
Remark: There are many statements about confidence intervals in the literature. They represent the projection 
of confidence regions on the axes of the parameter space. The ∆χ2  values given in the table for M=1 are always 
valid for the confidence intervals (without proof). Example: A confidence interval lies on the 99% level, if it has 
been generated by projection  of the confidence region with ∆χ2 =6.63, independent of the dimension M of the 
parameter space. 
 
Remark: The confidence regions are always ellipsoids in this case (see below). 

7.4.1.2  ”General linear least squares“ case 
In this case an analytical formula for the limits of the confidence regions can be given, i.e. it is not necessary to 
extract the iso-curves by calculating the Chi-square on a grid. The table given above is still valid for the 
confidence levels, however, there is an easier way to calculate the limits. If a variation δa of the parameter 



 60

vector proceeding from the optimum vector aopt is given, the change of the Chi-square is calculated according to 
the following formula (without proof): 
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Thus, the columns of the matrix V from the SVD of the design matrix A form the axes of an ellipsoid 
representing the margins of the confidence regions (iso-χ2 curves). The axis intercepts for the iso-curve at ∆χ2 = 
1 just represent the variance of the parameters (without proof): 
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These values represent the confidence interval of the parameter ak on the 68.3% level. 
 

7.4.2 The “Bootstrap“ method for estimating the confidence regions 
In cases of non-normal distribution of measurement errors (merit function is not the Chi-square) the above-
mentioned relation between confidence regions and confidence levels are not valid. In that case only empirical 
statistical methods can be applied to calculate the confidence regions, because analytical calculations are usually 
not feasible. A suitable empirical method is the "bootstrap“ method, which is explained in the following: From 
the available data set, new synthetic data sets are generated which have the same properties as the original data 
set in a statistical sense. Such a synthetic data set can be generated by drawing N data pairs (with replacement!) 
from the set of samples (N measured pairs). By drawing with replacement the data pairs of the synthetic data set 
are not identical with the measured data set and an arbitrary number of different synthetic data sets can be 
generated. Model fitting is then performed for each synthetic data set and the optimum set of parameters aopt is 
determined which, of course, differs depending on the data set. Now the distribution of the determined sets of 
parameters is calculated and those regions are stated as confidence regions in which a certain percentage of sets 
of parameters are found. 
 
Remark: The ”bootstrap“ method is only applicable, if the sequence of samples is not relevant and if the 
measurement errors of all samples have the same (non-normal) distribution. If this is not the case, time-
consuming Monte-Carlo methods are to be applied, which are not treated here. 

7.5 Goodness of fit 
Having determined the optimum set of parameters and its confidence ranges, we have to investigate whether the 
model sufficiently describes the data (“goodness of fit“). The probability Q that the remaining deviations of 
samples from the model prediction result from random measurement errors is determined and it is investigated, 
whether the deviations are of a systematic nature. Systematic deviations mean that the model does not cover 
systematic effects in the measured data, i.e., its prediction capacity and quality are limited. 
 

The goodness of fit is evaluated on the basis of the probability Q that the remaining 
deviations of measured values from the model prediction result from random 
measurement errors. The larger Q is, the larger is the goodness of fit. 

 
 
If the Chi-square merit function is applied, results of mathematical statistics can be used in order to calculate Q. 
For this, we make use of the fact that a K-fold sum of squares of independent N(0,1)-distributed random 
variables (Gauss-distributed with mean 0 and variance 1) are χ2K –distributed (Chi-square-distributed with K 
degrees of freedom). The Chi-square does not exactly correspond to this condition, because the model function 
reduces the independence of random variables. Nevertheless, the Chi-square is assumed with good 
approximation to be χ2

(N-M) –distributed with N samples and M model parameters. Q can be derived from this as 
follows (without proof): 
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The second addend represents the incomplete Gamma function. Q is directly calculated by inserting the 
observed Chi-square values at the minimum of the merit function as well as the number (N-M) of degrees of 
freedom into this formula. 
 
Remark: The incomplete Gamma function is available in Matlab as the command gammainc. 
 
On the basis of the value of Q the following statements on the model can be made: 
 
Value of Q Conclusion 
small (Q~10-18) The model is incorrect or 

the variance of random measurement errors has been estimated too small or 
the assumption of Gauss-distributed measuring errors is not correct. 

Q~10-3 Model OK 
Q~1 Too good to be true. Maybe the variance of random measurement errors has been 

estimated too large. 
 
Thus, it is obvious that the assumptions on the statistics of measurement errors must be correct for an 
“applicable” evaluation of the value of Q. 
 
The value of the Chi-square can also be assessed with a ”rule-of-thumb”. Assuming that the random deviation 
of data from the predicted model values is approximately 1σ  on average, then each addend in the  Chi-square 
function is approximately 1. The Chi-square thus takes approximately the value N for N addends (N samples). 
Simultaneously, the adjustment becomes easier with increasing number of parameters. This reduces the expected 
value of the Chi-square by about the number of parameters M. The rule-of-thumb thus reads, that the value 
of the Chi-square should about equal the number of degrees of freedom N-M, if the remaining deviations 
of samples from the model prediction are of random nature and to make the model acceptable. Hence, we 
obtain the following evaluation table: 
 
Value of χ2 Conclusion 
χ2>>N-M The model is incorrect or 

the variance of random measurement errors has been estimated too small or 
the assumption of Gauss-distributed measuring errors is not correct. 

χ2~N-M Model OK 
χ2<<N-M Too good to be true. Maybe the variance of random measurement errors has been 

estimated too large. 
 
Remark: For the other merit functions which are not based on a Gauss-distribution of measuring errors, Q and 
thus the goodness of fit are difficult to determine. 
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7.6 Summary of methods 
The following table shows the different cases of model adjustment: 
 

Case Merit function Minimization Confidence ranges Goodness of 
fit 

Random measurement 
errors Gauss-distributed 
and model function 
linear in the parameters 
(”general least-squares“) 

Chi-square via SVD or normal 
equations 

Calculation of iso-
χ2-curves via SVD 

Chi-square 
distribution or 
rule-of-thumb 

Measurement errors 
Gauss- distributed, but 
model function nonlinear 
in the parameters 

Chi-square Simplex method Calculation of iso-
χ2-curves by 
sampling the 
parameter space 

Chi-square 
distribution or 
rule-of-thumb 

Measurement errors not 
Gauss-distributed 

Merit function 
according to the 
Maximum-Likeli-
hood principle based 
on the assumed 
distribution of 
measurement errors 
(e.g. Lorentz 
distribution 
(“robust“ fit) or 
Poisson distribution) 

Simplex method “Bootstrap“ method Only feasible if 
the probability 
distribution of 
the values of 
the merit 
function can be 
derived, 
perhaps rule-
of-thumb is 
applicable 
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7.7 Exercises 
 
1. The supplied script linfit.m fits a straight line to test data. The χ2-function is used as merit function and the 

Simplex method for function minimization (Matlab function FMINS). 
 
i. Try to understand the script linfit.m and alter the test data as well as the initial values of the 

parameters. Which influence do “outliers” have? 
ii. Alter the merit function in such a way that it is based on Lorentz-distributed measurement 

errors. How does the influence of outliers change? 
 

2. In order to measure the half-life value of a radioactive isotope, the number of decays is counted every 10s 
for an interval of ∆t=1s. The following values are measured: 

 
Time / 

s 
Aktivity 

(Number of 
decays) 

Time / s Aktivity 
(Number of decays) 

10 24 60 5 
20 17 70 4 
30 11 80 2 
40 10 90 3 
50 6 100 1 

 
i. Estimate the half-life. Start from the model that the activity decreases exponentially: 

              ( )A t A e t= −
0

α  
Moreover, assume that the samples are Poisson-distributed: 

               ( )p k e
k

k

,
!

λ
λλ= −  

k being the number of decays and λ the expected number of decays (the expected value is the product 
of activity and counting interval: λ=A(t)* ∆t) 
(Hint: The merit function to be minimized is available on request as Matlab script f_pois.m) 
 

ii. By which percentage does the estimated half-life value change, if Gauss-distributed samples are 
assumed (least-squares fit)? 

 
3. The following figure shows the measured values of CO2 concentration in Hawaii from 1981 on (registered 

two-weekly). The standard deviation of the measurements is about σ = 0.16 ppm. 
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 Hint: The data are found in the file mauna.dat. Use the command „load mauna.dat –ascii“ for loading the 
data into Matlab’s workspace. 
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a) Determine the rate of increase in the CO2 concentration in ppm/year. As a model use a linear increase in  
    concentration. When will it be 15% higher than that of 1981 according to this model? 
    Use the Chi-square (σ = 0.16 ppm for all samples) as merit function and the Simplex method for 
    minimization. 
b) Like a), however, under the model assumption that the concentration increases quadratically. 
     Hint: The linear model function used in the script linfit.m can be easily extended to polynomials of the 
      n-th order by simply stating n+1 initial values of the parameters. 
c) Assess the goodness of fit of the models used in a) and b) by applying the “rule-of-thumb for the 
    Chi-square. Can we rely on the results from a) and b) on the expected time of a 15%  
    increase of the concentration? 
d) Which simple extension of the quadratic model function would improve the model? Repeat the 
    adjustment with this extended model function and assess the goodness of fit of this model using the 
   “rule-of-thumb”. 
e) (*) Repeat the adjustment as performed in exercise d) using the general least-squares“ method (with SVD). 
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8 Analog-Digital Transform and Discrete Fourier Transform 
Numerical methods play an important role in the analysis of sampled signals (e.g. the time course of temperature 
and pressure or voltages and currents as functions of time). Among these methods, spectral analysis, i.e. the 
analysis of the frequency contents of a signal by means of Discrete Fourier Transform (DFT) is particularly 
worth mentioning and will be explained in the following. First, the process of Analog-Digital Transform (A/D-
Transform) is described which is used to discretize analog signals in such a way that they can be processed on 
computers. On that basis the DFT as well as the Fast Fourier Transform (FFT) as a fast algorithm for calculating 
the DFT are introduced. Finally, the filtering of signals is described as an application of DFT. The so-called 
convolution theorem is of special importance in this context. 

8.1 Analog-Digital Transform (A/D Transform) 
Physical signals are generally continuous in time and value. For example, the time course of the pressure can 
generally be written as a real-valued function of continuous time p = p(t). We speak of analog signals and 
continuous functions, respectively11. Since computers can only process finite quantities of numbers, these 
measured signals/functions have to be transformed into finite sequences of numbers: 
 
 ( ) ( ){ } ;x t x n n K→ ∈ ⊂ ]  . 

 
The sequence consists of sampled values of the function at multiples of a predetermined period T: 
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This process of transformation into a sequence of numbers is called sampling or discretization. Its most 
important quantity is the sampling frequency fs, the reciprocal value of which is the sampling period T. The 
technical realization of sampling in order to discretize physical signals is called Analog-Digital Transform (A/D 
Transform) or digitization. 
 

 

                                                           
11 In case a real physical quantity is given as a function of time, the term “signal” is used in the following. The 
term “function“ is used as an abstract mathematical representation of a signal. 
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Analog-Digital Transform: Analog signal x(t) (solid line), sampling points (dashed lines) and 
samples (rhombs). The samples form the sequence of numbers {x(n)} = { x(0), x(1), x(2) , x(3) 
, . . .} related to the function x(t).  
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Remark: Sampling is mathematically also feasible for infinite signals, however, on the computer it can be 
applied to finite signals only, otherwise the sequence of samples would become infinitely long. 
 
Remark: Because of the finite precision of the number representation on the computer the values of the samples 
do not exactly correspond to the values of the function, but have a random roundoff error depending on the 
number representation. The deviation of the value of the sample represented on the computer from the true value 
of the function at the related point of time is called quantization error. If, for example, a sine function is 
represented by a series of samples, the quantization error just corresponds to the precision with which the values 
of the sine function are calculated. 
 
The course of the function between the sampling points is lost by sampling, however, the so-called sampling 
theorem states that no information is lost under a certain condition: 
 

Sampling theorem (without proof): 
A function x(t) can be uniquely reconstructed from the sequence of its samples {x(n)}, if it 
comprises only frequencies below half of the sampling frequency. In other words: The sequence 
of samples is a unique representation of the function only under this condition. 

 
To illustrate the latter, the signal cannot alter arbitrarily fast, if high frequencies are lacking. Therefore, it 
becomes predictable in between two samples (can be interpolated). 
 
Remark: In order not to infringe the sampling theorem, the analog signals must be low-pass filtered before 
sampling, i.e. all frequencies above half of the sampling frequency are blocked and only the low frequencies are 
passed. 
 
Remark: If a signal contains frequencies higher than half of the sampling frequency, they will be reflected at 
lower frequencies in the sequence of samples (“mirror frequencies”). This phenomenon is called aliasing (see 
Figure below and the Exercises). 

 

8.2 Diskrete Fourier Transform (DFT) 
The Fourier Transform is defined for continuous functions in general. It describes an expansion of the function 
into sine and cosine functions comprising any possible frequency (continuous frequency spectrum). It states at 
which amplitude and phase each frequency is contained in the function. In order to obtain a version of the 
Fourier Transform which uses finite sequences of numbers only and thus can be performed on the computer, 
sampled periodic functions are considered in the following. Let us assume the sampling period to be T and the 
period of the signal T0 = N⋅T, with N being a positive integer. Then such a function is unambiguously 
represented by the N samples of a period 
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sampling frequency which is too low. The samples (rhombs) also represent a sine wave of a 
lower frequency (dotted line) so that an ambiguity occurs (aliasing). The lower frequency is 
the ‘mirror frequency’ to the original frequency. 
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 ( ){ } ; 0, , 1x n n N= −…  

 
x(N) is again identical with x(0) due to periodicity etc. This finite sequence of numbers can be processed on a 
computer and nevertheless represents the entire infinitely long periodic function. 
 
What does a frequency spectrum of a sampled periodic function look like? It can only be composed of sine 
functions, which also have the period T0. Otherwise, a sine function would not be identical in two successive 
periods of the function, which contradicts the assumed periodicity. All sine functions with the period T0 / k with 
k as an arbitrary integer number also have the period T0. Thus, the spectrum comprises only frequencies fk = k / 
T0; hence, it is discrete with the sampling period f0 = 1 / T0 (this corresponds to the known Fourier series). 
Therefore, one prerequisite for representing the Fourier integral on the computer is already fulfilled: The 
spectrum can be represented as a sequence of numbers. But is this sequence really finite? This question is treated 
in the next paragraph. 
 
Owing to the symmetry of the Fourier Transform (transform and reverse transform are only distinguished by a 
negative sign, which corresponds to a time reversal) the argument used above is valid universally as well: If the 
frequency spectrum is periodic with the period fs = 1 / T (periodic with the sampling frequency), the time 
function is discrete with the sampling period T (which is just the starting point). In case of frequency samples at 
fk = k / T0  and a period of the spectrum of 1 / T = N / T0, there are exactly N different frequency components. 
 
Altogether, the frequency spectrum is periodic and discrete for discrete periodic functions. The function as well 
as its frequency spectrum can uniquely be represented as a finite sequence of numbers of the length N on the 
computer by the values of samples of one period each. The Discrete Fourier Transform relates the samples of the 
time function to those of the spectrum (without proof): 
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X(k) and x(n), respectively, represent the samples of the spectrum and the time function, respectively. The first 
equation denotes the DFT and the second equation denotes the inverse DFT. The relation between the actual 
index k and n, respectively and the frequency and time, respectively, is given by: 
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These formulas are applied to calculate the frequency and time axes of the sequences of numbers calculated by 
the DFT. The sample values x(n) may be real- or complex-valued, physical signals being always real-valued. 
The X(k) are complex-valued in both cases. The value |X(k)| represents the amplitude and the argument 
(arg(X(k))) represents the phase (shift), with which a sine/cosine function of the corresponding frequency is 
represented in the function x(n). 
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Remark: It is important to know that the DFT observes periodic functions exclusively. Considering an arbitrary 
finite function or signal, the DFT does not calculate the spectrum of that finite signal, but the spectrum of the 
periodically continued version of that period (for the consequences of this fact see the Exercises). 

8.2.1 Real-valued time functions 
If the time function x(n) is real-valued, the following relation holds for the spectral samples: 

 ( ) ( )* ; 0, ,
2
NX N k X k k− = = …  

, * denoting the complex conjugation. Thus, N/2 complex values X(k) are sufficient in order to represent N real 
values x(n) and the spectrum is uniquely represented within the range of up to half the sampling frequency (cf. 
formula presented above for conversion between frequency index and frequency). Therefore, the spectrum is 
only represented in the range between 0 Hz and half the sampling frequency fs/2 for real signals. The remainder 
is redundant. 
 
Remark: The sampling theorem and the aliasing mentioned above result from the periodicity of the spectrum. If 
the spectrum is periodic with a sampling frequency fs, only one of the periods is physically significant. For 
example, the values of the spectrum at the frequencies f = 0.3 fs and f = (0.3 fs + fs) are always identical. Thus, 
the sampled signal cannot have comprised sine functions of those frequencies independent of each other, so they 
are indistinguishable. For real signals this applies also to the frequencies f = 0.3 fs and f = (0.3 fs + fs/2) owing to 
the property mentioned above, so that the sampling theorem follows. 

8.2.2 Intensity spectrum 
Often we are not interested in the complex spectral values X(k), but the question is: With which intensity is a 
sine of a certain frequency contained in the signal? The intensity is just the square of the spectral value |X(k)|2. 
Within the range of typical physical signals, it may fluctuate by several orders of magnitude across the 
frequency so that it is often useful to take the logarithm for plotting the data. As intensity spectrum in dB 
(decibel) the following quantity is defined:  
 

( ) ( )( )21010 log ; 0, , 1L k dB X k k N= ⋅ = −…  

 
Remark: When the amount |X(k)| just increases tenfold, the value in the intensity spectrum changes by 20 dB. 
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DFT: Periodic physical signal (solid line, only one period is represented) and five of its 
different frequency components. Note the different frequencies, amplitudes, and relative 
shift (”phases“) of the components. 
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8.3 Fast Fourier Transform (FFT) 
The DFT is a relatively time-consuming method when calculating the spectral values X(k) directly according to 
the formula of the DFT. For each of the N spectral values N multiplications and additions are to be calculated so 
that the total expenditure is proportional to N2. However, Gauss already found out that partial sums of different 
frequencies (index k) are identical, if N is a power of 2, i.e. N = 21, 22, 23, 24, 25, 26.etc. The FFT makes use of 
these symmetry properties and calculates partial sums only once. Thus, the expenditure is reduced from N2 to 
N⋅log2(N), which means a considerable difference for large N. Therefore, the FFT is nothing but a fast algorithm 
for calculating the DFT. It can be assumed that the DFT would not have gained such an importance within the 
field of computer-controlled signal analysis, if this fast algorithm for its calculation had not been found. 
 
One possible derivation of the FFT algorithm is explained in the following. With the definition 
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First, this sum is divided into two partial sums containing the even and odd samples, respectively: 
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With the identity (see definition) 
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we obtain: 
 

 ( ) ( ) ( )
1 12 2

2 20 0

2 2 1
N N

kn k kn
N N N

n n

X k x n W W x n W
− −

= =

  = ⋅ + ⋅ + ⋅    
∑ ∑  

 
The two remaining sums just represent the formula for the DFT of the even and odd samples, respectively, 
which are referred to as Xg(k) and Xu(k) in the following: 
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For these DFT‘s of length N/2 the index k ranges between 0 and N/2 –1, however, for the spectral values X(k) it 
ranges from 0 to N-1. Owing to the identity 
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the partial sums for k = N/2 up to N-1, however, again represent the DFT of the even and odd samples, 
respectively. Thus, the modulo function mod yields: 
 

 ( ) ( )( ) ( )( )mod mod2 2
; 0, , 1k

N Ng uN
X k X k W X k k N= + ⋅ = −…  

 
The unknown spectral values X(k) thus result from the two spectral values Xg(k) and Xu(k) by multiplication and 
addition. Each Xg(k) and Xu(k) is used twice due to the modulo function. This is the time-saving fact. 
 
Altogether, these conversions divided the DFT of the length N into two DFT’s of the length N/2 each and a 
subsequent arithmetic combination. The two DFT’s work on the samples with even and odd indices, 
respectively, and the subsequent combination calculates the result of the entire DFT from the results of the 
partial DFT’s. The subsequent combination requires a total of N operations (one operation per spectral value). 
The two partial DFT’s can be split in the same way again in a further step, which results in two DFT’s of the 
length N/4 and a subsequent combination with N/2 operations each. Altogether, there are four DFT’s of the 
length N/4 and two subsequent combinations with a total of N operations in this next stage. This splitting can be 
repeated until the DFT works on two samples only. Then N/2 DFT’s of the length 2 with an expenditure of 2 
each are required, i.e., a total of N operations again. 
 
Thus, N operations are required in each stage (for the DFT’s of the length 2 in the lowest stage and for the 
subsequent combinations in the following stages, respectively) and there is a total of 10 log2(N) stages (e.g. N=8 
can be divided by 2 twice, until a DFT of the length 2 is reached. Thus, there are three stages altogether (one 
stage with DFT’s of the length 2 and two stages with subsequent combinations)). The total expenditure of the 
FFT is therefore proportional to N⋅log2(N), as stated above. 
 
Remark: The time required for calculating the DFT can be reduced to a certain degree also for the lengths N 
that do not correspond to a power of two. For this purpose N is split into a product of as many powers of two as 
possible, a separate FFT is performed for these partial sums of samples and the whole thing is assembled 
skillfully afterwards. This is called mixed-radix FFT, which is implemented in Matlab. The command fft 
performs a pure FFT or a mixed-radix FFT depending on the length of the given vector. The expenditure for a 
mixed-radix FFT ranges between that for a DFT and that for an FFT depending on how a number can be split iin 
powers of two. As it is not known beforehand in most cases how well a number can be split, powers of two 
should be used if possible. In order to obtain a desired sequence length, zeros should be added to the signal 
which does not alter the spectrum. 

8.4 Filtering and convolution theorem 
In signal theory the term filtering means the change of the frequency spectrum of a signal/function. For 
example, if certain frequency ranges in a physical signal to be analyzed are of particular interest, they may be 
increased by filtering, while the unimportant ones, e.g. the frequency ranges covered by noise can be reduced. 
Basically, four types of filters can be distinguished: 
 
1. Low-pass filter: Passes only frequencies below a certain cutoff frequency. 
2. High-pass filter: Passes only frequencies above a certain cutoff frequency. 
3. Band-pass filter: Passes only frequencies within a range between a given lower and a higher cutoff 

frequency. 
4. „Notch filter“: Passes only frequencies beyond a range between a given lower and higher cutoff 

frequency. 
 
In the frequency domain the filtering process can be mathematically formulated in a simple way. Since the 
spectral values state the amplitude and phase of the frequency content, filtering can be described as a 
multiplication of spectral values by a frequency-dependent factor: 
 
 ( ) ( ) ( ) ; 0, , 1Y k X k H k k N= ⋅ = −…  
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X(k) and Y(k) are the spectral values of the original and the filtered signals. The sequence of (complex) factors 
H(k) is a unique definition of the filter and can be freely predetermined for realizing the required type of 
filtering. It is called transfer function of the filter. 
 
Which operation within the time domain corresponds to the multiplication in the frequency range, i.e., how must 
x(n) and h(n) be linked in order that y(n) results (capitals and small letters mean pairs of time signals and 
spectral values that belong together)? For this purpose the convolution theorem of the DFT is applied (without 
proof): 
 
{x(n)} and {h(n)} be two sequences of length N. Be y(n)} calculated by means of a cyclic convolution: 
 

 
( ) ( )( )

( ) ( )( )
1

mod
0

 :

; 0, , 1N

N
m

zyklic convolution

y n x h n
n N

x m h n m
−

=

= ⊗
= −

= ⋅ −∑
…

 

 
The convolution theorem states that the spectral values Y(k) of the sequence {y(n)} are just the product of the 
spectral values of {x(n)} and {h(n)}: 
 

 
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

 :

; 0, , 1

; 0, , 1

: ; ;

convolution theorem

y n x h n n N

Y k X k H k k N

mit Y DFT y X DFT x H DFT h

= ⊗ = −

⇔ = ⋅ = −

= = =

…

…
 

 
Thus, a (cyclic) convolution in the time domain corresponds to a multiplication in the frequency domain. This is 
valid for the inverse, too: Multiplication in the time domain corresponds to conversion in the frequency domain. 
 
Thus, the realization of a filter by multiplication in the frequency domain with the transfer function H(k)  
corresponds to the cyclic convolution with the sequence {h(n)} in the time domain, which is calculated from the 
H(k) by inverse DFT. The sequence {h(n)} is called impulse response. 
 
Hence, filtering can be realized in two ways: 
 
1. Applying the convolution theorem: First, calculate the DFT of the sequence, multiply it by the selected 

transfer function and then form the inverse DFT, in order to obtain the time function of the output signal: 
 
 ( )( )y IDFT DFT x H= ⋅  
 
2. Generate the output sequence directly by convolution in the time domain. 
 
 ( ) ( )( ) ; 0, , 1y n x h n n N= ⊗ = −…  

 

8.4.1 Convolution and cyclic convolution 
In general, convolution for signals of any length is defined as: 
 

 

( ) ( )( )

( ) ( )
;

m

y n x h n
n

x m h n m
∞

=−∞

= ×
∈

= ⋅ −∑
]  

 
For indices beyond the domain of x or h, a zero is inserted as value for this general definition. Therefore, the 
sum may always range from −∞ to ∞ . 
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Since convolution is a time-consuming algorithm, it is often realized by means of the convolution theorem, first 
switching to the frequency domain, then multiplying and finally transforming back into time domain. If the 
signals have the length of a power of two, the FFT can be applied. In that case the total expenditure for forward 
and inverse FFT as well as for the multiplication is lower than for a direct application of the convolution sum for 
signal lengths exceeding N=128. For realizing the convolution using the convolution theorem the following has 
to be considered: If the signals x and h are periodic and equal in length, the general form of the convolution is 
identical with the cyclic convolution. The cyclic convolution yields exactly one period of the periodic signal 
generated by convolution of two periodic signals. Since the DFT deals with periodic signals exclusively, the 
convolution theorem of the DFT applies to cyclic convolution and not to the general convolution sum, even if 
only finite signals are considered! The cyclic convolution realized by applying the convolution theorem and the 
general convolution sum thus yield different results in general (cf. Exercises). 
 
Remark: The general form of the convolution sum is often applied as a mathematical definition of a filter. This 
also explains, why h is called the impulse response: If a pulse (x(1)=1, x(n)=0 otherwise), is used as input signal, 
the output function y is identical to h. 

8.4.2 Deconvolution 
The inversion of the filtering process is called deconvolution, which is applied, if the filtering effect of a filter 
needs to be compensated for (e.g. frequency-dependent alteration of the sensitivity of a sensor). Thus, an 
impulse response h* is required which exactly neutralizes the effect of a known filter (impulse response h, 
transfer function H): 
 

 

( ) ( )( )

( )

( ) ( )( ) ( )( )
*

* *

:

:

:

be y n x h n

desired h n

with x n y h n x h h n

= ×

= × = × ×

 

 
With the help of the convolution theorem, h* is easy to determine: 
 

 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )

( )
*

1

1( )

1

1

DFT y DFT x DFT h

DFT x DFT y
DFT h

x IDFT DFT y
DFT h

y IDFT
DFT h

h IDFT
DFT h

= ⋅

⇒ = ⋅

⇒ = ⋅

  = ×    
  ⇒ =    

, 

 
This equation shows that deconvolution is formally very easy to perform: For deconvolution, we simply divide 
by the transfer function H in the frequency range. Thus H is cancelled. In the time domain this corresponds to a 
convolution with the inverse DFT of the inverse transfer function 1/H. Division by H is, however, numerically 
very problematic, if – as frequently occurring in practice – the value of H approaches zero for one or several 
frequencies. There are special deconvolution methods, which are not treated here, which solve this problem by 
approximation. 
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8.5 Exercises 
 
1. Generate the different signals stated below with the sampling frequency fs = 10 kHz and a duration of 10 ms 

(corresponding to100 samples). Calculate the intensity spectrums using the FFT (Matlab function fft) and 
plot four periods (frequency axis -2 fs to +2 fs). Plot also four periods of each of the time signals (time axis –
20 ms up to +20 ms). Where do the noticable differences in the spectra come from (qualitative explanation)? 
 
(a) Sine of the frequency 1 kHz. 
(b) Sine of the frequency 925 Hz 
(c) Sine of the frequency 1050 Hz 
 

2. Aliasing phenomenon: Generate a sine of the frequency 1 kHz with the sampling frequencies fs = 1.5, 1.7, 
1.9, and 2.1 kHz and a duration of 50 periods (50 ms) each. Calculate the respective intensity spectrum and 
plot four periods (frequency axis -2 fs up to +2 fs). Identify the aliasing components. According to which 
formula can their frequency be calculated? 
 

3. Convolution theorem: The following sampled functions be defined: 
 

}{
}{
}{

1 0,0,0,1,0,0,0,0,0,0

2 1,2,3, 4,5, 0, 0, 0, 0, 0

3 1,2,3, 4,5,6,7,8,9,10

x

x

x

=

=

=

 

 
Calculate the convolution 2 1x x∗  and 3 1x x∗  by insertion into the convolution sum (non-cyclic 
convolution) and by application of the convolution theorem of the DFT (Hint: Matlab provides the functions 
fft and ifft for the Discrete Fourier Transform). What strikes us about the result and how can it be explained? 
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9 Partial Differential Equations 
While ordinary differential equations (ODE) describe functions of one variable, e.g. x=x(t), partial differential 
equations (PDE) deal with functions of several variables, e.g. the temperature as a function of space and time, T 
= T(x,t). PDE are generally subdivided into three classes. Unfortunately, there are no universally applicable 
numerical methods for solving PDE like, e.g., the Runge-Kutta method for solving ODE. Thus, the three classes 
will be treated in the following by means of important examples and their specific solution methods. 

9.1 Classification of partial differential equations 

9.1.1 Parabolic equations 
Parabolic PDE describe diffusion processes in a broadest sense, for example the heat equation 
 

 ( ) ( )2, ,T x t T x t
t x

κ∂ ∂=
∂ ∂

 . 

 
(with: T, temperature, x and t, variables of position and time and κ, coefficient of thermal conduction) and the 
time-dependent Schrödinger equation from quantum mechanics 
 

 ( ) ( ), ,i x t H x t
t
∂ Ψ = Ψ
∂

=  

 
with the Hamilton operator H. 

9.1.2 Hyperbolic equations 
Hyperbolic PDE describe transport processes, for example the advection equation 
 

 
( ) ( ), ,a x t a x tc
t x

∂ ∂=−
∂ ∂

 

 
and the wave equation 
 

 
( ) ( )2 2

2
2 2

, ,A x t A x t
c

t x
∂ ∂=

∂ ∂
 . 

 
A is the amplitude of the wave, x and t are variables of position and time, and c is the velocity of the wave. 

9.1.3 Elliptic equations 
The prototype of an elliptic PDE is the Poisson equation of electrostatics describing the potential of a charge 
distribution: 
 

 
( ) ( ) ( )

2 2

2 2
0

, , 1 ,
x y x y

x y
x y

ρ
ε

∂ Φ ∂ Φ+ = −
∂ ∂

 

 
Φ is the potential, x and y are position variables, and ρ is the charge density distribution. If the charge density is 
zero, the resulting equation is called Laplace equation. 
 
Remark: All equations are written one- or two-dimensional here for clarity. Formulation in several dimensions 
is possible (see textbooks). 
 
Remark: The equations stated here are prototypes of the three classes. Real problems are often represented by 
mixtures of these prototype equations, e.g., the wave equation with damping. 
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9.2 Initial value problems 
Equations that are position- as well as time-dependent are treated as initial value problems. The state at time t = 
0 must be known, just as in the case of ordinary DE’s. For the heat equation, for example, this means 
 
 ( )0 , 0T T x t= =  

 
and for the wave equation (2 integration constants, because it is an equation of 2nd order) 
 

 ( )0 , 0A A x t= =  and 
( )'

0

, 0dA x t
A

dx
==  . 

 
T(x,t) and A(x,t), respectively for t>0 are then to be calculated. To determine the initial state, however, is not 
sufficient for solving the problem. In addition, the boundary conditions must be formulated. For this purpose, 
the solution is restricted to the range of  x-values 

 ,2 2
L Lx  ∈ −    

with arbitrary and fixed L. There are several ways to restrict the solution to the boundary (stated for the heat 
equation here): 
 
1. Fixed values of the solution on the boundary (Dirichlet’s boundary condition): 

 

 ( ) ( ),   ,   ,2 2a b
L LT x t T T x t T= − = = =  

 
2. Periodic boundary conditions: 

 

 ( ) ( ), ,2 2
L LT x t T x t= − = =  

or 

 
2 2
L Lx x

dT dT
dx dx=− =

=  

 
Thus, the solution is searched within an area limited by t=0 and x=± L/2. The question of why boundary 
conditions are needed is solved later on. 

9.2.1 Discretization 
For numerical calculation, time variable as well as position variable are discretized by sampling. The sampling 
points are 
 
 : ; 0,1, 2, 3, 4,nt n nτ= ⋅ = … 

with the sampling period/step size τ. The area x=± L/2 is divided into N intervals, i.e., the sampling period/step 
size of the position variable is 
 

 
Lh
N

=  

 
and the sampling points (number of points: N+1) are 
 
 : ; 0,1,2, ,2i

Lx i h i N= ⋅ − = … . 

 
The solution is then searched for the variable pairs (xi , tn), i.e. the solution points 
 
 ( ): ,n

i i nT T x t=  
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are to be determined (here written for the heat equation). These are the definitions of sampling points and 
sampling positions used to describe the different methods in the following. 

9.2.2 Heat equation: FTCS scheme 
The FTCS scheme (Forward-Time-Centered-Space) makes use of the right-hand derivative formula for 
discretizing the time variable (Forward Time) and the centered derivative formula for the position variable. For 
the heat equation this means that the derivatives are being replaced by the following discrete approximations: 
 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2
1 1

2 2 2

, ,,

, , 2 , 2,

n n
n ni i i i

n n n
n n ni i i ii i

T x t T x t T TT x t
t

T x h t T x h t T x t T T TT x t
x h h

τ
τ τ

+

+ −

+ − −∂ → =
∂

+ + − − ⋅ + − ⋅∂ → =
∂

 . 

 
Note that the index notation introduced above was used for time and position index, respectively. Insertion into 
the heat equation yields 
 

 

( )

1
1 1

2

1
2 1 1

2

2

n n nn n
ii ii i

n n n n n
i i ii i

T T TT T
h

T T T T T
h

κ
τ

κτ

+
+ −

+
+ −

+ − ⋅−
= ⋅

⇒ = + + − ⋅
 . 

 
From the initial values 0

iT  and the boundary values 0
nT  and n

NT  the solution values n
iT  can be calculated 

iteratively with this formula. 
 
Remark: It is necessary to predetermine the boundary values for the centered derivative! 
 
The step sizes τ  and h have to be chosen according to the length and time scales occurring in the individual 
physical problem. The relation between both values is of special importance, because it contradicts physical 
intuition to calculate the solution with a large time step τ  from closely neighbouring points (h relatively small). 
The maximum time step for given h is (without proof): 
 

 
2

max 2
hτ
κ

=  

 
If the time step is chosen larger than this maximum, the solution becomes unstable. This equation can be 
empirically derived (see Exercises) or it can be derived by means of the von-Neumann stability analysis (cf. 
Section 9.2.5). 

9.2.3 Time-dependent Schrödinger equation: Implicit Scheme (Crank-Nicholson) 
The time-dependent Schrödinger equation 
 

 ( ) ( ), ,i x t H x t
t
∂ Ψ = Ψ
∂

=  

 
with the wave function Ψ has the Hamilton operator 
 

 ( )
2

22
H V x

m x
∂= − +
∂

=
 . 

 
for a particle of the mass m and the potential V. The square of the wave function describes the sojourn 
probability density 
 
 ( ) ( ) 2, ,P x t x t= Ψ  . 
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With this FTCS scheme the discretized Schrödinger equation reads: 
 

 

1 2
1 1

2

2
1 11

2

2

2
2

2

n n nn n
jj j j j n

j j

n n n
jj jn n n

j j j j

i V
m h

i V
m h

τ
τ

+
+ −

+ −+

Ψ + Ψ − ΨΨ − Ψ
= − + ⋅ Ψ

 Ψ + Ψ − Ψ  ⇔ Ψ = Ψ − − + ⋅ Ψ   

==

=
=

 

 
using the above-mentioned notation for time and position indices. Writing the wave function as a time-
dependent column vector 
 

 

1

:

n

n

n
N

 Ψ     Ψ =     Ψ   

#  

 
we can write the discretized equation as a matrix equation solving the scheme for all sampling points of the 
position simultaneously: 
 

 

1

1 1

n n n

n n

i H

i H

τ

τ

+

+

Ψ = Ψ − ⋅ Ψ

 ⇔ Ψ = − ⋅ Ψ  

=

=

   (*). 

 
H is the matrix of the discretized Hamilton operator with the components 
 

 
2

,, 1 , 1
2, ,

2

2
i ji j i j

i j i i jH V
m h

δ δ δ
δ+ −+ −

= − +=
 . 

 
The matrix equation (*) solves the Schrödinger equation according to the FTCS scheme. Since such matrix 
formulations are often found in the literature, this form is emphasized here. 
 
Proceeding from the equation (*) the Crank-Nicholson method was developed as the most important type of the 
so-called implicit schemes. On the right side of the equation not only the old value of Ψ, but the mean of the old 
and new values is inserted: 
 

 
( )1 1

1

2

1 1
2 2

n n n n

n n

i H

i iH H

τ

τ τ

+ +

+

Ψ = Ψ − ⋅ Ψ + Ψ

     ⇔ + Ψ = − Ψ      

=

= =

. 

 
Solving for Ψ n+1 then yields the Crank-Nicholson scheme: 
 

 
1

1 1 1
2 2

n ni iH Hτ τ−
+      Ψ = + − Ψ       = =

. 

 
As compared to the FTCS scheme, this scheme has the advantage that it is always stable and that the applied 
matrix operators are unitary (without proof). 
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9.2.3.1 Wave package of a free particle 
As an example of solving the Schrödinger equation we observe a Gaussian wave package which is used in 
quantum mechanics to describe a free particle (potential V=0). As initial value for the wave function 
 

 ( ) ( ) ( )( )2 2
0 0 0

0

1, 0 exp exp 2x t ik x x x σ
σ π

Ψ = = − −   . 

 
is used, 0x  being the current average position of the particle. 0σ  is the current width of the package and  

0 0p k= ⋅=  is the current impulse of the particle. The time development of the wave function can be calculated 

from the initial state by means of the Crank-Nicholson scheme. We know from quantum mechanics that there is 
also an analytical solution for the wave package. It reads: 
 

 
( ) ( )( ) ( )( )2

20
0 0 0 0

0

2 2
0

1, exp 2 exp 2 2

:

x t ik x p t m x x p t m

with i t m

σ
α

ασ π

α σ

Ψ = − − − −

= + =
  . 

 
Thus, the form of the wave package is preserved in time. The mean value (expected value) moves at the velocity  

0p m : 

 

 ( ) 0
0,
p

x x P x t dx x t
m

= ⋅ = +∫  

 
and the standard deviation expands according to 

 ( )
4

2 2

2 40 0
0 0

1 tt
m

ασ σ σ
σ σ

  = = +  
=

  . 

 
This analytical solution can be used in order to test the Crank-Nicholson scheme (see Exercises). 

9.2.4 Advection equation: Lax-Wendroff scheme 
We proceed from the wave equation 
 

 
( ) ( )2 2

2
2 2

, ,A x t A x t
c

t x
∂ ∂= ⋅

∂ ∂
 . 

 
As in the case of ODE we rewrite this equation of the 2nd order into two equations of the 1st order. For this, we 
define the intermediate variables 
 

 ;A Ap q c
t x

∂ ∂= = ⋅
∂ ∂

 . 

 
With that we can write the wave equation as a pair of equations 
 

 ;p q q pc c
t x t x

∂ ∂ ∂ ∂= ⋅ = ⋅
∂ ∂ ∂ ∂

 

 
The first equation has resulted from the insertion of the variable into the wave equation. The second equation is 
yielded by a comparison of the mixed derivatives from  p to x und from q to t. These two equations can be 
written in a vector form again: 
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( ) ( )

( )
( )

( )

, ,

, 0 1
: , ;

1 0,

a x t a x tc B
t x

p x t
with a x t B

q x t

∂ ∂= ⋅ ⋅
∂ ∂

      = =        

 

 
The wave equation is not the simplest equation of this kind. Setting 
 

 
1 0

0 0
B

−  =   
 

 
, we obtain the so-called advection equation12 
 

 
( ) ( ), ,a x t a x tc
t x

∂ ∂=−
∂ ∂

 

 
, with a being the unknown quantity which we can imagine as the amplitude of a wave. In the following we 
observe this simplest form of a hyperbolic equation. By insertion it is easy to demonstrate that each function of 
the form: 
 
 ( ) ( )

0,a x t f x ct= −  

 
with an arbitrary function f0 is a solution of the advection equation, c representing a diffusion velocity. For 
example, a cosine-modulated Gauss pulse 
 

 ( ) ( )
( )2

2

2, cos exp
2

x c ta x t x c tπ
λ σ

 − ⋅  = − ⋅ ⋅ −       
 

 
is a solution. The function represents a short wave package of the wave length λ and of the spatial extent σ, 
which moves in the direction x at the velocity c. 
 
Since the analytical solution is known in the case of the advection equation, it can be used to test numerical 
methods for solving hyperbolic equations. In the following the Lax-Wendroff scheme is presented for this 
purpose. 
 
Remark: The advection equation represents the simplest form of a conservation equation. 
 

 ( )( ) ( )
oder 1-D:a a F agrad F a

t t x
∂ ∂ ∂=− =−
∂ ∂ ∂

 

 
a can be the density of the mass, impulse or energy and F(a) can be related to the flow of the mass, impulse or 
energy, for example. The continuity equation for the mass in a current be stated as an example (one-
dimensional): 
 

 
( ) ( ) ( )( ), , ,x t x t v x t
t x

ρ ρ∂ ∂=− ⋅
∂ ∂

 . 

 
ρ is the mass density and v the velocity of the current. 

                                                           
12 Advection: Horizontal movement of masses of air or horizontal flow of masses of water in the sea (according 
to some dictionary). 
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9.2.4.1 Lax-Wendroff scheme 
Theoretically, the advection equation can be discretized according to the FTCS scheme, however, this does not 
yield a stable solution (see Section 9.2.5 and Exercises). The Lax-Wendroff scheme is of a higher order and 
represents a stable method for solving the advection equation, although it is not without numerical errors (see 
Exercises). To derive the scheme, we proceed from the Taylor expansion of the 2nd order for the time 
development: 
 

 ( ) ( ) ( ) ( )22

2

, ,, ,
2

a x t a x ta x t a x t
t t

ττ τ ∂ ∂+ ≈ + ⋅ + ⋅
∂ ∂

 

 
Then the second derivative with respect to time is determined from the advection equation: 
 

 

( )
( )

2

2

:a F a with F a c a
t x
a F F
t t x x t

∂ ∂=− = ⋅
∂ ∂
∂ ∂ ∂ ∂ ∂⇒ =− =−
∂ ∂ ∂ ∂ ∂

 

 
With 
 

 
( )

( ) ( )
( )F a dF a a F aF a F a

t da t t x
∂ ∂ ∂ ∂′ ′= ⋅ = ⋅ =− ⋅
∂ ∂ ∂ ∂

 

 
we obtain the following form of the second derivative by insertion 
 

 ( )
( )2

2

a F aF a
t x x

∂ ∂ ∂′=
∂ ∂ ∂

 

 
and hence for the Taylor development: 
 

 ( ) ( ) ( )( ) ( )( ) ( )( )2 ,
, , , ,

2
F a x t

a x t a x t F a x t F a x t
x x x

ττ τ
 ∂ ∂ ∂  ′ + ≈ − ⋅ + ⋅       ∂ ∂ ∂ 

 

 
This formula again allows the state at time t+τ to be calculated from states at time t. It is discretized now 
(nomenclature of indices as for the heat equation). For the first derivative of time the centered formula is 
applied: 
 

 ( ) 1 1

, 2
ni

n n
i i

x t

F F
F a
x h

+ −−∂ →
∂

 

 
The calculation of the multiple derivative in the last term is rather complex. The outer derivative is a right-hand 
formula, just like the inner derivative. The derivative F′ is calculated from the mean of the amplitude values 
found in both terms of the outer right-hand derivative: 
 



 81

 

( )
( )

( )
( )
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1
1

,

1
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,

2

2
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x t x t

x t

n n
n n ii

ii
x t

n n
n n i i
i i

x t

F a F aF a F a
x xF aF a

x x h

F FF aF a F a a
x h

F FF aF a F a a
x h

+

+

+
+

−
−

   ∂ ∂  ′ ′−       ∂ ∂ ∂ ∂  ′ →  ∂ ∂

− ∂   ′ ′→ + ⋅     ∂

− ∂   ′ ′→ + ⋅     ∂

 

 
Altogether, this yields: 
 

 
2

1 1 1 1 1
1 2 1 2

1
2 2

n n n n n n
n n n nii i i i i
i i i i

F F F F F F
a a F F

h h h h
ττ+ + − + −

+ −

 − − −  ′ ′= − ⋅ + ⋅ ⋅ − ⋅    
 

 
with 
 

 ( ) ( )1 2 1 2n n n n n
i i ii iF F a and F F a a± ±

 ′ ′≡ ≡ +    . 

 
For the advection equation with 
 

 
( )

1 2
n n n
i i i

F a c a

F c a and F c±

= ⋅

′⇒ = ⋅ =
 

 
the considerably simplified form reads: 
 

 ( ) ( )
2 2

1
21 1 1 1 2

2 2
n n n n n n n
i i ii i i i

c ca a a a a a a
h h
τ τ+

+ − + −= − − + + −  

 
Just as in the case of the FTCS scheme, a sample at time t+τ can be calculated from three neighbouring points at 
a time t in this way. Contrary to the FTCS scheme, however, it is stable if the time step is maximally τ max, with 
 

 max
h
c

τ =  

 
A proof is feasible by means of the von-Neumann stability analysis (cf. Section 9.2.5) (see also Exercises). 

9.2.5 von-Neumann stability analysis 
The von-Neumann stability analysis allows to determine stability rules for the different schemes for solving 
PDE. We start from a little perturbation ”injected“ into the iteration equations and then track, whether this 
perturbation diverges (instable scheme) or converges (“damping” of the perturbation, stable scheme). If the 
perturbation is chosen skillfully, this can be decided analytically, i.e. without actual numerical iteration of the 
equation. For the von-Neumann analysis the following special perturbation is used, which represents a fixed 
wave with time-dependent amplitude: 
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:

:  

2 :   ( )

:  

:   (   )/  (   )

:  

:   -1

n n i k h j
ja e

with

Amplification factor

k Wave number arbitrary

h spatial step

n time index left hand side exponent right hand side

j spatial index

i complex number

ξ

ξ
π
λ

⋅ ⋅ ⋅= ⋅

=
 

 
The dependence on position (complex e-function) and the dependence on time (power function) are separated 
here, i.e. they are represented as a product (Remarks: The index n means the index of time on the left hand side 
of the equation (discretization) and the power of the amplitude on the right hand side. In order to avoid a 
confusion with the complex number i, j was used here as the index of time). The amplitude ξ  is also called 
amplification factor. If the amplification factor for an iterative equation is larger than 1, it is instable. It is 
stable only for values smaller than 1. Calculation of ξ  by means of the FCTS scheme is shown in the following 
exemplary for the advection equation. 

9.2.5.1 Stability of the FTCS scheme for the advection equation 
The FTCS scheme for the advection equation (insertion of the right-hand and centered formulas, respectively, 
for time and position) reads: 
 

 ( )1
1 12

n n n n
j j j j

ca a a a
h
τ+

+ −= − −  . 

 
Insertion of the perturbation yields: 
 

 

( ) ( )( )

( )

1 1 1

2

1
2

n ikhj n ikhj n ikh j n ikh j

n ikhj ikh ikh

ce e e e
h
ce e e
h

τξ ξ ξ ξ

τξ

+ + −

−

⋅ = ⋅ − ⋅ − ⋅

 = ⋅ − −   

 . 

 
Dividing both sides by n ikhjeξ ⋅  we directly obtain an expression for the amplification factor: 
 

 
( )

( )

1
2

1 sin

ikh ikhc e e
h
ci kh
h

τξ

τ

−= − −

= −
 

 
The absolute value of the amplification factor then is: 
 

 ( )
2

21 sinc kh
h
τξ  = +     

 
This expression is always larger than 1 independent of the time step chosen. By this we have analytically shown 
that the scheme is instable without having to iterate the equation numerically. This is made possible by the 
skillful choice of the perturbation. Please refer to exercises for the application of the von-Neumann stability 
analysis to the Lax-Wendroff scheme. 
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9.3 Boundary value problems: Poisson and Laplace equations 
Equations independent of time are described as boundary value problems. The Poisson and Laplace equations 
from electrostatics are two important examples. As initial condition, the solution on the boundary of an area 
needs to be predetermined. For two dimensions a rectangle with the side lengths Lx and Ly can be chosen as the 
boundary13. The x-variable then runs from x=0 to x= Lx and the y-variable from 0 to Ly. The boundary conditions 
read 
 

 
( ) ( )
( ) ( )

1 2

3 4

0, ,

, 0 ,

x

y

x y x L y

x y x y L

Φ = = Φ Φ = = Φ

Φ = = Φ Φ = = Φ
 

 
(Dirichlet’s boundary condition) and 
 

 
( ) ( )

( ) ( )
0, ,

, 0 ,

x

y

x y x L y

x y x y L

Φ = = Φ =

Φ = = Φ =
 

 
(periodic boundary conditions). The solution is then to be determined in the interior of the rectangle. For the 
numerical solution, the x- and y-variables are again discretized by sampling. For this purpose, N and M intervals 
are used for the x- and y-dimension, respectively: 
 

 
; : ; 0,1,2, ,

; : ; 0,1,2, ,

x
x xi

y
y yj

Lh x i h i N
N
L

h y j h j M
M

= = ⋅ =

= = ⋅ =

…

…
 . 

 
Then the solution is calculated for the variable pairs (xi , yj), i.e. the solution points 
 

 ( ), : ,i j i jx xΦ = Φ  

 
are calculated. Basic methods for solving the Laplace and Poisson equations are investigated in the following. 

9.3.1 Laplace equation: Relaxation methods (Jacobi method) 
The Laplace equation 
 

 
( ) ( )2 2

2 2

, , 0x y x y
x y

∂ Φ ∂ Φ+ =
∂ ∂

 

 
is identical to the heat equation in two dimensions in its spatial coordinate except for the factor (coefficient of 
thermal conduction) 
 

 
( ) ( ) ( )2 2

2 2

, , , , , ,T x y t T x y t T x y t
t x y

κ
 ∂ ∂ ∂ = ⋅ +  ∂ ∂ ∂ 

 

 
For large times (t infinite) the solution of the heat equation approaches a stationary state (stationary temperature 
distribution): 
 

 

( ) ( )

( ) ( )2 2

2 2

lim , , ,

, , 0

st

s s

T x y t T x y

T x y T x y
x y

→∞
=

∂ ∂⇔ + =
∂ ∂

 

                                                           
13 There are other special solutions for cyclindrical and spherical geometries. 
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Thus, the stationary state Ts is at the same time a solution of the Laplace equation. The general idea of the 
relaxation methods is to introduce a virtual dependence on time into a time-independent equation and then to 
iterate it until a stationary state is reached. The latter is the solution for the stationary, time-independent 
equation. In the simplest case this means for the Laplace equation that we write the equation formally like the 
heat equation, as shown above, making the potential time-dependent: 
 

 
( ) ( ) ( )2 2

2 2

, , , , , ,x y t x y t x y t
t x y

µ
 ∂Φ ∂ Φ ∂ Φ = ⋅ +   ∂ ∂ ∂ 

 

 
µ being an arbitrary convergence factor (corresponding to the coefficient of heat conduction). According to the 
FTCS scheme the equation can be discretized as follows: 
 

 ( ) ( )1
, , , ,1, 1, , 1 , 12 2

2 2n n n n n n n n
i j i j i j i ji j i j i j i j

x yh h
µτ µτ+

+ − + −Φ = Φ + Φ +Φ − ⋅Φ + Φ +Φ − ⋅Φ  . 

 
The nomenclature for time and position indices is as stated above. Note, however, that the scheme has been 
applied to both spatial dimensions here. Hence, the new state at the point (xi,yj) is calculated from the values in 
this point and all directly neighbouring points. 
 
Similar to the FTCS scheme of the one-dimensional heat equation, the stability condition for this scheme reads 
(without proof): 
 

 
2 2

1 2
x yh h
µτ µτ+ ≤  . 

 
Observing the equation in case of identical step sizes hx and hy, i.e. 
 
 x yh h h= =  , 

 
the stability condition reads 
 

 2 1 4
h
µτ ≤  . 

 
Since only the stationary state is of interest, the maximal time step is chosen. Insertion of 
 

 2 1 4
h
µτ =  

 
into the relaxation scheme yields 
 

 ( )1
, 1, 1, , 1 , 1

1
4

n n n n n
i j i j i j i j i j
+

+ − + −Φ = Φ + Φ + Φ + Φ  . 

 
Please note that the central point (xi,yj) does not enter the calculation of the potential at all but only the 
neighbouring points because of the maximum time step chosen. This scheme is a special relaxation scheme for 
solving the Laplace equation and is called the Jacobi method. Proceeding from the Jacobi method the 
convergence velocity can be increased by varying the iteration rules. The schemes resulting from that are called 
superrelaxation schemes. Well-known methods are Gauss-Seidel and simultaneous superrelaxation. Since 
they are derived from the Jacobi method rather empirically, they will not be treated in detail here (refer to the 
textbooks). 
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9.3.1.1 Calculating initial values 
The convergence of relaxation methods depends on the initial values chosen to initialize the unknown values in 
the interior of the rectangle. If they are chosen skillfully, the system can converge with distinctly less steps. It is 
known from the literature that the solution of a Laplace equation can be determined analytically within a 
rectangle using the method of separation of variables. Typically, this results in infinite series, which are 
exactly defined analytically, but converge slowly in general. Therefore, a numerical solution is still desirable, 
although an analytical solution exists. If the infinite series is known, it is the obvious thing to use the first 
elements of the series as initial value for the relaxation methods. As an example let us look at the solution of the 
Laplace equation on a rectangle with the boundary conditions 
 

 
( ) ( ) ( )

( ) 0

0, , , 0 0

,

x

y

x y x L y x y

x y L

Φ = = Φ = = Φ = =

Φ = = Φ
 

 
The ansatz of the separation of variables 
 
 ( ) ( ) ( ),x y X x Y yΦ = ⋅  
 
with these boundary conditions yields the solution (cf. textbooks) 
 

 ( ) 0
1,3,5,

4, sin sinh x

N x y x

n y Ln xx y
n L n L L

ππ
π π

∞

=

    Φ = Φ ⋅         
∑

…

 . 

 
If the first element of the series is taken as initial value of the Jacobi method, the convergence velocity increases 
considerably as compared to a suboptimal choice of initial values (cf. Exercises). 

9.3.2 Poisson equation 
The Poisson equation 
 

 
( ) ( ) ( )

2 2

2 2
0

, , 1 ,x y x y x y
x y

ρ
ε

∂ Φ ∂ Φ+ =
∂ ∂

 

 
generally has no analytical solutions for an arbitrary distribution of charges ρ by means of separation of 
variables. Therefore, two numerical methods are presented in the following. The charge density is discretized 
like the potential: 
 

 ( ), : ,i j i jx xρ ρ=  

9.3.2.1 Jacobi method 
The Jacobi method can be directly extended to solve the Poisson equation. The formalism used in Section 9.3.1 
leads to the relaxation equation 
 

 1 2
, ,1, 1, , 1 , 1

0

1 1
4

n n n n n
i j i ji j i j i j i j h ρ

ε
+

+ − + −

  Φ = Φ + Φ + Φ + Φ +   
 . 

 
Since there are generally no analytical solutions, the initial values cannot be chosen optimally. Therefore, the 
convergence is to be expected to be slow. 
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9.3.2.2 Method of multiple Fourier transform 
Contrary to Dirichlet’s boundary conditions, the method of multiple Fourier transform enables the Poisson 
equation to be solved on a square with periodic boundary conditions14. The number of samples N and M as well 
as the step sizes hx and hy in x- and y-direction must be identical: 
 

 
x y

N M

h h h

=

= =
 

 
Proceeding from that the partial derivatives are discretized with respect to the spatial coordinates by the centered 
formula: 
 

 

2
,1, 1,

2 2
,

2
,, 1 , 1

2 2
,

2

2

i ji j i j

i j

i ji j i j

i j

x h

y h

+ −

+ −

Φ + Φ − ⋅Φ∂ Φ →
∂

Φ + Φ − ⋅Φ∂ Φ →
∂

 

 
Insertion into the Poisson equation thus yields: 
 

 ( )2 , ,1, 1, , 1 , 1
0

1 14 i j i ji j i j i j i jh
ρ

ε+ − + −Φ +Φ +Φ +Φ − ⋅Φ =     (*) 

 
Now we define the two-dimensional Discrete Fourier transform (2-D DFT) of the potential and the charge 
density as 
 

 

1 1

, ,
0 0

1 1

, ,
0 0

; , 0, , 1

; , 0, , 1
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= ⋅ ⋅ = −

 = −   

∑∑

∑∑

…

…  

 
(as compared to the one-dimensional DFT). The equation (*) is now Fourier-transformed on both sides. This 
yields: 
 

 

( ) , ,2
0

2

, ,
0

1 14

2 22 cos 2 cos 4

m m n n
m n m nN N N N

m n m n

W W W W F R
h

m n hF R
N N

ε
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        ⇔ + − ⋅ =−           

       (**) 

 
using the theorem that: 
 

 

'
, ,

'
, ,

: :j k j l k

lm
m n m nN

displacement

F W F
+

−

Φ = Φ

⇒ = ⋅
 

 
(for proof refer to Remark below). Hence, displacement means a multiplication of the spectral components by a 
complex factor. 
                                                           
14 Since the discrete Fourier transform considers periodic functions only, it is not surprising that this method 
uses periodic boundary conditions. 



 87

 
Altogether, the spectral components of the potential can be determined from the (known) spectral components of 
the given distribution of the charge by solving the equation (**) for the Fm,n: 
 

 

( )

, , ,

2

,
0

1: 2 22 cos cos 2

:

m n m n m n

m n

F P R

hwith P m n
N N

and IDFT F

π πε

= ⋅

    =−           + −           
Φ =

 

 
Thus, the unknown potential is yielded by inverse Fourier transform of the spectral components Fm,n., which, in 
turn, result from filtering the spectral components of the charge distribution with the filter P. 
 
Remark: Determination of the spectral components Fm,n from the Rm,n corresponds to a filtering process with the 
transfer function Pm,n. 
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Remark: Proof of the displacement theorem:  
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9.4 Exercises 
 
1. The script dftcs solves the heat equation according to the FTCS scheme for a delta-shaped temperature 

distribution across the x-axis as initial value. This distribution “decays” in the course of time by diffusion. 
Examine the stability of the solution for different sets of parameters. Use N=41 and several values of the 
time step τ within the ranges 10-3 and 10-5. Try several different values of N for τ = 2.0x10-4. 

2. Show by insertion that the Gaussian function 
 

( )
( )

( )
( )

T x t
t

x x
t

, exp=
− −











1
2 2

0
2

2σ π σ
 

 
with 
 

( )σ κt t= 2   
 
is the solution of the heat equation. Derive a stability rule from the time development of the variance σ 
(Hint: Calculate the time required for the variance to rise from 0 to h, h being the grid width of the spatial 
coordinate). Does this correspond to the results of Exercise 1? 

3. Calculate the time development of the wave function of a free particle (Gaussian wave package) according 
to the Crank-Nicholson scheme with periodic boundary conditions. Use the following parameters: L=100; 
N=30 and 80; m=1; τ=1; 1== ; 0 1σ =  and the mean velocity 0 0 0.5p m k m= == . 

Proceed as follows: 
- Calculate the initial state 0Ψ . Ensure that the boundary values are periodic. 
- Calculate the matrix of the Hamilton operator. Ensure that it meets the periodic boundary conditions 
  (which demands are to be made on the matrix in this respect?) 
- Calculate the total matrix in order to calculate 1n+Ψ  from nΨ . 
- Iterate the scheme until the wave package has circularly passed the system once  
   (calculate the number of the steps required for this from L, τ, and the mean velocity). 
– Plot 0Ψ  (real and imaginary parts) as well as 

2nΨ  for all time points (3D plot). 
 
To what extent does the numerical solution correspond to the analytical solution? Why does the numerical 
solution for N=30 not come up to our expectation (cue: sampling theorem)? 

4. The script aftcs solves the advection equation according to the FTCS scheme with periodic boundary  
conditions and a cosine-modulated Gauss pulse as initial value. 
 
a.) Apply the script with a time step τ=0.002 and N=50 grid points. How do we know that the 
     obtained numerical solution is not correct? 
b.) Solve the equation according to the Lax-Wendroff scheme. Modify the script accordingly and 
     judge the numerical solution. For this purpose, use time steps just below the maximum stable 
     time step and the maximum time step itself. 
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5. Apply the von-Neumann stability analysis to the Lax-Wendroff scheme. For this, calculate the formula for 
the amount of the amplification factor |ξ | (calculation in writing). Derive the stability condition 
 

 max
h
c

τ =  

 
by discussing the maximum of |ξ | for the following cases: 
 

 

1

: 1

1

c
h
τ

<=>

 

 
Hint: Observe the maximum values of the different terms of |ξ | in dependence on the argument x = k⋅h⋅j of 
the sine and cosine functions. For illustration, plot |ξ | as a function of x for x at the interval 0 to 2π for these 
three cases. 

6. The script jacobi solves the Laplace equation on a square. The potential on the margin is zero on three sides 
and 1 on one side (y=L). As initial value for the inner points the first member of the infinite series is used 
which represents the analytical solution (solution via separation of variables). The time expenditure is 
critical. It is basically determined by the number of grid points and the initial values chosen. 
 
a.) Use the script for different spatial solutions (number of grid points N=10 to 30). 
     How much does the time expenditure increase with the spatial solution? Plot the  
     number of iterations required for convergence over N and adjust a power law to 
     the data. Determine the exponent. 
b.) Repeat a.), however, use badly chosen initial values (e.g. potential Φ=0 for all 
     inner points. 

7. Solve the Poisson equation 
 

( ) ( ) ( )∂
∂

∂
∂ ε

ρ
2

2

2

2
0

1Φ Φx y
x

x y
y

x y
, ,

,+ = −  

 
on a square with the side length 1 for the following charge distributions: 
 
a. One point charge of 1 at [x,y]=[0.5 0.5]. 
b. One point charge of 1 at [x,y]=[0.4 0.6] (What is striking us as compared to a.?) 
c. Two point charges of 1 and –1 at [x,y] = [0.5 0.45] and [0.5 0.55](dipole). 
 
For a solution use the method of multiple Fourier Transform (script fftpoi.m). Try to understand the script 
as far as possible. 

 


